On Hoffmann-Jørgensen’s Inequality for U-Processes

  • Evarist Giné
  • Joel Zinn
Part of the Progress in Probability book series (PRPR, volume 30)


The object of this note is to prove an analogue for U-processes of (1974) tail inequality for sums of independent symmetric random vectors. The result obtained is best possible in a certain sense but is less useful than the original inequality.


Canonical Function Uniform Integra Real Random Variable Mathematical Science Research Institute Hand Side Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arcones, M.A. and Giné, E. (1991). Limit theorems for U-processes. Preprint.Google Scholar
  2. Bonami, A. (1970). Etude des coefficients de Fourier des fonctions de L P (G.). Ann. Inst. Fourier 20, 335–402.MathSciNetMATHCrossRefGoogle Scholar
  3. Hitczenko, P. (1988). Comparison of moments for tangent sequences of random variables. Probab. The. Rel Fields 78, 223–230.MathSciNetMATHCrossRefGoogle Scholar
  4. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52, 159–189.MathSciNetGoogle Scholar
  5. Hoffmann-Jørgensen, J. (1977). Probability in Banach spaces. Lecture Notes in Math. 598, 1–186.CrossRefGoogle Scholar
  6. de la Peña, V. (1990). Decoupling and Khintchine’s inequalities for U-statistics. Ann. Probability, to appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Evarist Giné
    • 1
  • Joel Zinn
    • 2
  1. 1.Department of MathematicsUniversity of ConnecticutStorrsUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations