Skip to main content

Protein-Acetaldehyde Adducts as Biochemical Markers of Alcohol Consumption

  • Chapter

Abstract

There are two types of diagnostic markers for alcohol abuse and alcoholism: trait (or vulnerability) markers and state markers.1,2 Trait markers include indicators that will identify individuals who are more vulnerable than the general population to develop alcoholism; and as the term implies, they are tests that elicit certain genetic traits. By comparison, state markers are tests that will identify alcohol abuse by reflecting psychosocial, biochemical, or physiological changes brought about by chronic and excessive alcohol intake. Because of the enormous problem of alcohol abuse and alcoholism in the West, research to devise a test or a panel of tests to serve as trait or state markers is critically important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Israel (1985) Markers of alcohol consumption and task ahead, in Early Identification of Alcohol Abuse, Research Monograph No. 17, N. C. Chang and H. M. Chao, eds. (PHHS Publication, Rockville, MD), pp. xi–xv.

    Google Scholar 

  2. A. W. K. Chan (1990) Biochemical markers for alcoholism, in Children of Alcoholics: Critical perspectives. M. Windle and J. S. Searles, eds. (Guilford, New York), pp. 39–71.

    Google Scholar 

  3. M. L. Selzer (1972) The Michigan Alcoholism Screening Test: The quest for a new diagnostic instrument. Am. J. Psychol 127, 1653–1658.

    Google Scholar 

  4. J. A. Ewing (1984) Detecting alcoholism: The CAGE questionnaire. JAMA 252, 1905–1907.

    Article  PubMed  CAS  Google Scholar 

  5. M. W. Bernadt, C. Taylor, and J. Mumford (1982) Comparison of questionnaire and laboratory tests in the detection of excessive drinking and alcoholism. Lancet 1, 325–328.

    Article  PubMed  CAS  Google Scholar 

  6. T.-K. Li (1977) Enzymology of human alcohol metabolism. Adv. Enzymol. 45, 427–483

    PubMed  CAS  Google Scholar 

  7. C. S. Lieber and L. M. DeCarli (1970) Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 245, 2505–2512.

    PubMed  CAS  Google Scholar 

  8. H. W. Goedde and D. P. Agarwal (1989) Acetaldehyde metabolism: genetic variation and physiological implications, Alcoholism: Biomedical and Genetic Aspects. H. W. Goedde and D. P. Agarwal, eds. (Pergamon, New York), pp. 21–56.

    Google Scholar 

  9. C. S. Lieber and L. M. DeCarli (1972) The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharmacol. Exp. Ther. 181, 279–287.

    PubMed  CAS  Google Scholar 

  10. C. J. P. Eriksson (1980) Problems and pitfalls in acetaldehyde determinations. Alcoholism: Clin. Exp. Res. 4, 22–29.

    Article  CAS  Google Scholar 

  11. C. J. P. Eriksson (1983) Human blood acetaldehyde concentration during ethanol oxidation. Pharmacol. Biochem. Behav. 18, 141–150.

    Article  PubMed  CAS  Google Scholar 

  12. K. O. Lindros (1983) Human blood acetaldehyde levels: with improved methods, a clearer picture emerges. Alcoholism: Clin. Exp. Res. 7, 70–75.

    Article  CAS  Google Scholar 

  13. S.-J. Yin and T.-K. Li (1989) Genetic polymorphism and properties of human alcohol and aldehyde dehydrogenase: Implications for ethanol metabolism and toxicity, Molecular Mechanisms of Alcohol: Neurobiol. Metabolism. G. Y. Sun, P. K. Rudeen, W. G. Wood, Y. H. Wei and A. Y. Sun, eds. (Humana Press, Clifton, NJ), pp. 227–248.

    Google Scholar 

  14. K. O. Lindros, A. Stowell, P. Pikkarainen, and M. Salaspuro (1980) Elevated blood acetaldehyde in alcoholics with accelerated ethanol elimination. Pharmacol. Biochem. Behav. 13, 119–124.

    Article  PubMed  Google Scholar 

  15. K. Matthewson, A. L. H. Mardini, K. Barlett, and C. O. Record (1986) Impaired acetaldehyde metabolism in patients with non-alcoholic liver disorders. Gut 27, 756–764.

    Article  PubMed  CAS  Google Scholar 

  16. H. R. Thomasson, T.-K. Li, and D. W. Crabb (1990) Correlations between alcohol-induced flushing, genotypes for alcohol and aldehyde dehydrogenase and alcohol elimination rates. Hepatology 12, 264.

    Article  Google Scholar 

  17. E. Mezey, A. L. Imbembo, J. J. Potter, and P. Holt (1975) Ethanol production and hepatic disease following jejunoileal bypass for morbid obesity. Am. J. Clin. Nutr. 28, 1277–1283.

    PubMed  CAS  Google Scholar 

  18. E. Baraona, R. Julkunen, L. Tannenbaum, et al. (1986) Role of intestinal bacterial overgrowth in ethanol production and metabolism in rats. Gastroenterology 90, 103–110.

    PubMed  CAS  Google Scholar 

  19. I. R. McManus, E. Brotsky, and R. E. Olson (1966) The origin of ethanol in mammalian tissues. Biochim. Biophys. Acta 121, 167–170.

    Article  PubMed  CAS  Google Scholar 

  20. L. I. Malkin and D. M. Greenberg (1964) Purification and properties of threonine or allothreonine aldolase from rat liver. Biochim. Biophys. Acta 85, 117–131.

    PubMed  CAS  Google Scholar 

  21. F. J. Lionetti, N. L. Fortier, and J. A. Jedziniak (1964) Acetaldehyde, a product of deoxynucleoside metabolism in human erythrocyte ghosts. Proc. Soc. Exp. Bio. Med. 116, 1080–1082.

    CAS  Google Scholar 

  22. H. L. Fleshood and H. C. Pitot (1970) The metabolism of O-phosphorylethanolamine in animal tissues. J. Biol. Chem. 245, 4414–4420.

    PubMed  CAS  Google Scholar 

  23. R. C. San George and H. D. Hoberman (1986) Reaction of acetaldehyde with hemoglobin. J. Biol. Chem. 261, 6811–6821.

    CAS  Google Scholar 

  24. L. Lumeng and P. J. Durant (1985) Regulation of the formation of stable adducts between acetaldehyde and blood proteins. Alcohol 2, 397–400.

    Article  PubMed  CAS  Google Scholar 

  25. T. Donohue D. Tuma, and M. Sorrell (1983) Acetaldehyde adducts with proteins: Binding of (14C) acetaldehyde to serum albumin. Arch. Biochem. Biophys. 220, 239–246.

    Article  PubMed  Google Scholar 

  26. K. Gaines, J. Salhary, D. Tuma, and M. Sorrell (1977) Reactions of acetaldehyde with human erythrocyte membrane proteins. FEBS Letters 75, 115–119.

    Article  PubMed  CAS  Google Scholar 

  27. F. Nomura and C. S. Lieber (1981) Binding of acetaldehyde to rat liver microsomes: Enhancement after chronic alcohol consumption. Biochem. Biophys. Res. Comm. 100, 131–137.

    Article  PubMed  CAS  Google Scholar 

  28. D. Tuma, R. Jennett, and M. Sorrell (1987) The interaction of acetaldehyde with tubulin. Ann. NY Acad. Sci. 492, 277–286.

    Article  PubMed  CAS  Google Scholar 

  29. D. S. Xu, R. B. Jennett, S. L. Smith, M. F. Sorrell, and D. J. Tuma (1989) Covalent interactions of acetaldehyde with the actin/microfilament system. Alcohol Alcoholism 24, 281–289.

    CAS  Google Scholar 

  30. T. Mauch, D. Tuma, and M. Sorrell (1987) The binding of acetaldehyde to the active site of ribonuclease: Alterations in catalytic activity and effects of phosphate. Alcohol 22, 103–112.

    CAS  Google Scholar 

  31. D. J. Tuma, M. R. Newman, T. M. Donohue, and M. F. Sorrell (1987) Covalent binding of acetaldehyde to proteins: Participation of lysine residues. Alcoholism: Clin. Exp. Res. 11, 579–584.

    Article  CAS  Google Scholar 

  32. T. J. Mauch, T. M. Donohue, R. K. Zetterman, and M. F. Sorrell (1985) Covalent binding of acetaldehyde to ly sine-dependent enzymes can inhibit catalytic activity. Hepatology 5, 1056.

    Google Scholar 

  33. V. J. Steven, U. J. Fand, C. B. Newman, R. V. Sims, A. Cerami, and C. M. Peterson (1981) Acetaldehyde adducts with hemoglobin. J. Clin. Invest. 67, 361–369.

    Article  Google Scholar 

  34. L. Lumeng, R. Minter, and T.-K. Li (1982) Distribution of stable acetaldehyde adducts in blood under physiological conditions. Fed. Proc. 41, 765.

    Google Scholar 

  35. L. B. Nguyen and C. M. Peterson (1986) Differential modification of hemoglobin chains by acetaldehyde. Proc. Soc. Exp. Bio. Med. 181, 151–156.

    CAS  Google Scholar 

  36. L. Lumeng and R. G. Minter (1985) Formation of acetaldehyde-hemoglobin adducts in vitro and in vivo demonstrated by high performance liquid Chromatograph. Alcoholism: Clin. Exp. Res. 9, 209.

    Google Scholar 

  37. L. Lumeng and R. Minter (1985) Formation of acetaldehyde-hemoglobin adducts in vitro and during chronic alcohol ingestion. Clin. Res. 33, 529A.

    Google Scholar 

  38. P. Sillanaukee and T. Koivula (1990) Detection of a new acetaldehydeinduced hemoglobin fraction HbAlach by cation exchange liquid chromatography. Alcoholism: Clin. Exp. Res. 14, 842.

    Article  CAS  Google Scholar 

  39. S. M. Gapstur, E. G. DeMaster, J. D. Belcher, J. D. Potter, M. D. Gross (1991) The formation of stable hemoglobin adducts in human red blood cells exposed to ethanol and acetaldehyde. Alcoholism: Clin. Exp. Res. 15, 378.

    Google Scholar 

  40. R. C. Lin, R. S. Smith, and L. Lumeng (1988) Detection of a proteinacetaldehyde adduct in the liver of rats fed alcohol chronically. J. Clin. Invest. 81, 615–619.

    Article  PubMed  CAS  Google Scholar 

  41. U. J. Behrens, M. Hoerner, J. M. Lasker, and C. S. Lieber (1988) Formation of acetaldehyde adducts with ethanol-inducible P450IIE1 in vivo. Biochem. Biophys. Res. Comm. 154, 584–590.

    Article  PubMed  CAS  Google Scholar 

  42. U. J. Behrens, X.-L. Ma, E. Baraona, and C. S. Lieber (1989) Acetaldehydecollagen adducts in CCI-induced liver injury in rats. Hepatology 10, 608.

    Google Scholar 

  43. Y. Israel, E. Hurwitz, O. Niemela, and R. Arnon (1986) Monoclonal and polyclonal antibodies against acetaldehyde-containing epitopes in acetaldehy deprotein adducts. Proc. Nat. Acad. Sci. 83, 7923–7927.

    Article  PubMed  CAS  Google Scholar 

  44. M. Hoerner, U. J. Behrens, T. Worner, and C. S. Lieber (1986) Humoral immune response to acetaldehyde adducts in alcohol patients. Res. Comm. Chem. Pathol. Pharmacol 54, 3–12.

    CAS  Google Scholar 

  45. O. Niemela, F. Klajner, H. Orrego, E. Vidins, L. Blendis, and Y. Israel (1987) Antibodies against acetaldehyde-modified protein epitopes in human alcoholics. Hepatology 7, 1210–1214.

    Article  PubMed  CAS  Google Scholar 

  46. C. M. Peterson and C. M. Polizzi (1987) Improved method for acetaldehyde in plasma and hemoglobin-associated acetaldehyde. Alcohol 4, 477–480.

    Article  PubMed  CAS  Google Scholar 

  47. R. C. Lin, L. Lumeng, S. Shahidi, T. Kelly, and D. Pound (1990) Proteinacetaldehyde adducts in serum of alcoholic patients. Alcoholism: Clin. Exp. Res. 14, 438–443.

    Article  CAS  Google Scholar 

  48. O. Niemela and Y. Israel (1991) Evaluation of acetaldehyde-hemoglobin adducts as markers of alcohol consumption in humans. Gastroenterology 100, A780.

    Google Scholar 

  49. R. C. Lin and L. Lumeng (1989) Further studies on the 37KD liver proteinacetaldehyde adduct that forms in vivo during chronic alcohol ingestion. Hepatology 10, 807–814.

    Article  PubMed  CAS  Google Scholar 

  50. R. C. Lin and L. Lumeng (1990) Formation of the 37-KDprotein-acetaldehyde adduct in liver during alcohol treatment is dependent on alcohol dehydrogenase activity. Alcoholism: Clin. Exp. Res. 14, 766–770.

    Article  CAS  Google Scholar 

  51. R. C. Lin, M. Fillenwarth, R. Minter, and L. Lumeng (1990) Formation of the 37-KD protein-acetaldehyde adduct in primary cultured rat hepatocytes exposed to alcohol in vitro. Hepatology 11, 401–407.

    Article  PubMed  CAS  Google Scholar 

  52. L. Lumeng and R. C. Lin (1991) Formation of a 37 kilodalton liver proteinacetaldehyde adduct in vivo and in liver cell culture during chronic alcohol exposure. Ann. N.Y. Acad. Sci. 625, 793–801.

    Article  PubMed  CAS  Google Scholar 

  53. H. D. Hoberman and S. M. Chiodo (1982) Elevation of the hemoglobin Al fraction in alcoholism. Alcoholism: Clin. Exp. Res. 6, 260–266.

    Article  CAS  Google Scholar 

  54. F. R. Homaidan, L. J. Kricka, P. M. S. Clark, S. R. Jones, and T. P. Whitehead (1984) Acetaldehyde-hemoglobin adducts: An unreliable marker of alcohol abuse. Clin. Chem. 30, 480–482.

    PubMed  CAS  Google Scholar 

  55. E. Gordis and S. Herschkopf (1986) Application of isoelectric focusing in immobilized pH gradients to the study of acetaldehyde-modified hemoglobin. Alcoholism: Clin. Exp. Res. 10, 311–319.

    Article  CAS  Google Scholar 

  56. T. I., Stockham and R. V. Blanke (1988) Investigation of an acetaldehydehemoglobin adduct in alcoholics. Alcoholism: Clin. Exp. Res. 12, 748–754.

    Article  CAS  Google Scholar 

  57. W. L. Stahovec and K. Mopper (1984) Trace analysis of aldehydes by phase high-performance liquid Chromatograph. J. Chromatogr. 298, 399–406.

    Article  CAS  Google Scholar 

  58. N. S. Ung-Chhun and M. A. Collins (1987) Estimation of blood acetaldehyde during ethanol metabolism: a sensitive HPLC/Fluorescence microassay with negligible artifactual interference. Alcohol 4, 473–476.

    Article  PubMed  CAS  Google Scholar 

  59. E. Baraona, C. Di Padova, J. Tabasco, and C. S. Lieber (1987) Red blood cells: A new major modality for acetaldehyde transport from liver to other tissues. Life Sci. 40, 253–258.

    Article  PubMed  CAS  Google Scholar 

  60. R. Hernandez-Munoz, E. Baraona, I. Blacksberg, and C. S. Lieber (1989) Characterization of the increased binding of acetaldehyde to red blood cells in alcoholics. Alcoholism: Clin. Exp. Res. 13, 654–659.

    Article  CAS  Google Scholar 

  61. C. M. Peterson, L. Jovanovic-Peterson, and F. Schmid-Formby (1988) Rapid association of acetaldehyde with hemoglobin in human volunteers after low dose ethanol. Alcohol 5, 371–374.

    Article  PubMed  CAS  Google Scholar 

  62. C. M. Peterson and B. K. Scott (1989) Studies of whole blood associated acetaldehyde as a marker for alcohol intake in mice. Alcoholism: Clin. Exp. Res. 13, 845–848.

    Article  CAS  Google Scholar 

  63. C. M. Peterson, B. K. Scott, G. Y. Sun, and A. Y. C. Sun (1990) A comparative blinded study in miniature swine of whole blood-, hemoglobin-, platelet-, plasma-, and lymphocyte-associated acetaldehyde as markers for ethanol intake. Alcoholism: Clin. Exp. Res. 14, 717–720.

    Article  CAS  Google Scholar 

  64. O. Niemela, Y. Israel, Y. Mizoi, T. Fukunaga, and C. J. P. Eriksson (1990) Hemoglobin-acetaldehyde adducts in human volunteers following acute ethanol ingestion. Alcoholism: Clin. Exp. Res. 14, 838–841.

    Article  CAS  Google Scholar 

  65. R. K. Pullarkat and S. Raguthu (1985) Elevated urinary dolichol levels in chronic alcoholics. Alcoholism: Clin. Exp. Res. 9, 28–30.

    Article  CAS  Google Scholar 

  66. U.-M. Korri, H. Nuutinen, and M. Salaspuro (1985) Increased blood acetate: A new laboratory marker of alcoholism and heavy drinking. Alcoholism: Clin. Exp. Res. 9, 468–471.

    Article  CAS  Google Scholar 

  67. D. D. Rutstein, R. L. Veech, R. J. Nickerson, M. E. Felyer, A. A. Vernon, L. L. Needham, P. Kishore, and S. B. Thacker (1983) 2,3-Butanediol: An unusual metabolite in the serum of severely alcoholic men during acute intoxication. Lancet 2, 534–537.

    Article  PubMed  CAS  Google Scholar 

  68. B. K. Tang, P. Devenyi, D. Teller, and Y. Israel (1986) Detection of an alcohol specific product in urine of alcoholics. Biochem. Biophys. Res. Comm. 140.924–927.

    Article  PubMed  Google Scholar 

  69. B. Nalpas, A. Vassault, A. LeGuillou, B. Lesgourgues, N. Ferry, B. Lacour, and P. Berthelot (1984) Serum activity of mitochondrial aspartate aminotransferase: A sensitive marker of alcoholism with or without alcoholic hepatitis. Hepatology 4, 893–896.

    Article  PubMed  CAS  Google Scholar 

  70. C. C. Lin, J. J. Potter, and E. Mezey (1984) Erythrocyte aldehyde dehydrogenase activity in alcoholism. Alcoholism: Clin. Exp. Res. 8, 539–541.

    Article  CAS  Google Scholar 

  71. P. Puchois, M. Fontan, J. L. Gentilini, P. Gelez, and J. C. Fruchart (1984) Serum apolipoprotein A-II, A biochemical indicator of alcohol abuse. Clin. Chim. Ada 185, 185–189.

    Article  Google Scholar 

  72. H. Stibler, S. Borg, and C. Allgulander (1980) Abnormal microheterogeneity of transferrin: A new marker of alcoholism? Substance Alcohol Actions/Misuse 1, 247–252.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lumeng, L., Lin, R.C. (1992). Protein-Acetaldehyde Adducts as Biochemical Markers of Alcohol Consumption. In: Litten, R.Z., Allen, J.P. (eds) Measuring Alcohol Consumption. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0357-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0357-5_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6723-2

  • Online ISBN: 978-1-4612-0357-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics