Readiness-Potentials Preceding Unrestricted’ spontaneous’ vs. Pre-Planned Voluntary Acts

Part of the Contemporary Neuroscientists book series (CN)


Discovery of the ‘Bereitschafts’ - (BP) or ‘readiness’ -potential (RP), a scalp-recorded potential change that starts up to a second or more before a self-paced motor act (Kornhuber and Deecke 1965; Gilden et al. 1966), appeared to provide an electrophysiological indicator of neuronal activity that specifically precedes and may initiate a freely. voluntary movement. There have been at least two kinds of uncertainties in this proposition.


Unknown Time Trial Series Motor Series Volitional Process Slow Potential Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Deecke, L. and Kornhuber, H.H. An electrical sign of participation of the mesial’ supplementary’ motor cortex in human voluntary finger movement. Brain Res., 1978, 159: 473–476.PubMedCrossRefGoogle Scholar
  2. Deecke, L., Scheid, P. and Kornhuber, H.H. Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements. Exp. Brain Res., 1969, 7: 158–168.PubMedCrossRefGoogle Scholar
  3. Deecke, L., Grö zinger, B. and Kornhuber, H.H. Voluntary finger movement in man: cerebral potentials and theory. Biol. Cybernet., 1976, 23: 99–119.CrossRefGoogle Scholar
  4. Desmedt, J.E. Scalp-recorded cerebral event-related potentials in man as point of entry into the analysis of cognitive processing. In: F.O. Schmitt, F.G. Worden, G. Adelman and S.D. Dennis (Eds.), The Organization of the Cerebral Cortex. M.I.T. Press, Cambridge, Mass. 1981: 441–473.Google Scholar
  5. Desmedt, J.E. and Debecker, J. Wave form and neural mechanism of the decision P350 elicited without pre-stimulus CNV or readiness potential in random sequences of nearthreshold auditory clicks and finger stimuli. Electroenceph. clin. Neurophysiol., 1979, 47: 648–670.PubMedCrossRefGoogle Scholar
  6. Donchin, E., Otto, D., Gerbrandt, L.K. and Pribram, K.H. While a monkey waits; electrocortical events recorded during the foreperiod of a reaction time study. Electroenceph. clin. Neurophysiol., 1971, 31: 115–127.PubMedCrossRefGoogle Scholar
  7. Foit, A., Larsen, B., Hattori, S., SkinhÕj, E. and Lassen, N.A. Cortical activation during somatosensory stimulation and voluntary movement in man: a regional cerebral blood flow study. Electroenceph. clin. Neurophysiol., 1980, 50: 426–436.PubMedCrossRefGoogle Scholar
  8. Gemba, H., Hashimoto, S. and Sasaki, K. Slow potentials preceding self-paced hand movements in the parietal cortex of monkeys. Neurosci. Lett., 1979, 15: 87–92.PubMedCrossRefGoogle Scholar
  9. Gilden, L., Vaughan, Jr., H.G. and Costa, L.D. Summated human EEG potentials with voluntary movement. Electroenceph. clin. Neurophysiol., 1966, 20: 433–438.PubMedCrossRefGoogle Scholar
  10. Hashimoto, S., Gemba, H. and Sasaki, K. Premovement slow cortical potentials and required muscle force in self-paced hand movements in the monkey. Brain Res., 1980, 197: 415–423.PubMedCrossRefGoogle Scholar
  11. Kornhuber, H.H. Cortex, basal ganglia and cerebellum in motor control. In: W.A. Cobb and H. Van Duijn (Eds.), Contemporary Clinical Neurophysiology, Electroenceph. clin. Neurophysiol., Suppl. No. 34. Elsevier, Amsterdam, 1978: 449–455.Google Scholar
  12. Kornhuber, H.H. und Deecke, L. Hirnpotentialä nderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. ges. Physiol., 1965, 284: 1–17.CrossRefGoogle Scholar
  13. Kutas, M. and Donchin, E. Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science, 1974, 186: 545–548.PubMedCrossRefGoogle Scholar
  14. Kutas, M. and Donchin, E. Preparation to respond as manifested by movement-related brain potentials. Brain Res., 1980, 202: 95–115.PubMedGoogle Scholar
  15. Libet, B., Alberts, W.W., Wright, E.W. and Feinstein, B. Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science, 1967, 158: 1597–1600.PubMedCrossRefGoogle Scholar
  16. Libet, B., Alberts, W.W., Wright, E.W., Lewis, M. and Feinstein, B. Cortical representation of evoked potentials relative to conscious sensory responses and of somatosensory qualities — in man. In: H.H. Kornhuber (Ed.), The Somatosensory System. George Thieme, Stuttgart, 1975: 291–308.Google Scholar
  17. McAdam, D.W. and Seales, D.M. Bereitschaftspotential enhancement with increased level of motivation. Electroenceph. clin. Neurophysiol., 1969, 27: 73–75.PubMedCrossRefGoogle Scholar
  18. Pieper, CF., Goldring, S.J. Jenny, A.B. and McMahon, J.P. Comparative study of cerebral cortical potentials associated with voluntary movements in monkey and man. Electroenceph. clin. Neurophysiol., 1980, 48: 266–292.PubMedCrossRefGoogle Scholar
  19. Rebert, C.S. Cortical and subcortical slow potentials in the monkey’ s brain during a preparatory interval. Electroenceph. clin. Neurophysiol., 1972, 33: 389–402.PubMedCrossRefGoogle Scholar
  20. Rosen, S.C. and Stamm, J.S. Cortical steady potential shifts during delayed response performance by monkeys. Electroenceph. clin. Neurophysiol., 1969, 27: 684–685.PubMedGoogle Scholar
  21. Sanquist, T.F., Beatty, J.T. and Lindsley, D.B. Slow potential shifts of human brain during forewarned reaction. Electroenceph. clin. Neurophysiol., 1981, 51: 639–649.PubMedCrossRefGoogle Scholar
  22. Shibasaki, H., Barrett, G., Halliday, E. and Halliday, A.M. Components of the movement-related cortical potential and their scalp topography. Electroenceph. clin. Neurophysiol., 1980, 49: 213–226.PubMedCrossRefGoogle Scholar
  23. Vaughan, Jr., H.G., Costa, L.D. and Ritter, W. Topography of the human motor potential. Electroenceph. clin. Neurophysiol., 1968, 25: 1–10.PubMedCrossRefGoogle Scholar
  24. Walter, W.G., Cooper, R., Aldridge, V.J., McCallum, W.C. and Winter, A.L. Contingent negative variation: an electrical sign of sensorimotor association and expectancy in the human brain. Nature (Lond.), 1964, 203: 380–384.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  1. 1.Neurological Institute-Department of Neuroscience, Mount Zion Hospital and Medical Center, and Department of PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations