Advertisement

Algebraic Computer Aided-Design with Maple V 2

  • C. T. Lim
  • M. T. Ensz
  • M. A. Ganter
  • D. W. Storti

Abstract

This paper describes implicit_solids which implements implicit solid modeling (ISM) using MapleV2. Implicit solid modeling refers to the method that uses an implicit function to define a composite object. Various primitives are pre-defined and joined using Boolean operations to form the resulting implicit function [Storti et al. 1992].

Keywords

Rational Coefficient Boolean Operation Solid Modeling Computer Algebra System Cell Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr, A.H., “Superquadrics and Angle-Preserving Transformations”, IEEE Computer Graphics and Applications, Vol. 1, No. 1, 1981, pp. 11–23.CrossRefGoogle Scholar
  2. Blechschmidt, J.L. and Nagasaru, D., “The Use of Algebraic Functions as a Solid Modeling Alternative: An Investigation”, Advances in Design Automation, B. Ravani, ed., ASME Design Conference, Chicago, Il., 1990, pp. 33–41.Google Scholar
  3. Canny, J., Donald, B.R., Ressler, E.K., and Rote, G., “A Rational Rotation Method for Robust Geometric Algorithms”, Proc. ACM Symp. on Computational Geometry, Berlin, 1992.Google Scholar
  4. Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., and Watt, S.M., First Leaves: A Tutorial Introduction to MapleV, Springer-Verlag, 1992.CrossRefGoogle Scholar
  5. Foley, J.D.,van Dam, A., Feiner, S.K., and Hughes, J.F., Computer Graphics: Principles and Practice, 2nd ed., Addison-Wesley, New York, 1990.Google Scholar
  6. Ganter, M.A. and Storti, D.W., “Object Extent Determination for Algebraic Solid Models”, Advances in Design Automation, D.L. Hoeltzel, ed., DE-Vol. 44–2, 1992, pp. 275–283.Google Scholar
  7. Ganter, M.A. and Storti, D.W., “Algebraic Solid Modeling: A Renewed Method for Geometric Design”, ASME Resource Book for Innovation in Design Education, 1992.Google Scholar
  8. Ganter, M.A., Storti, D.W., “Algebraic Methods for Implicit Swept Solids”, submitted to Advances in Design Automation, 1993.Google Scholar
  9. Marshall, N., The Great All-American Wooden Toy Book, Rodale Press, 1986, pp. 126–127.Google Scholar
  10. Requicha, A.A.G. and Voelcker, H.B., “Historical Summary and Contemporary Assessment”, IEEE Computer Graphics and Applications, Vol. 2, No. 2, 1982, pp. 9–24.CrossRefGoogle Scholar
  11. Ricci, A., “A Constructive Geometry for Computer Graphics”, The Computer Journal, Vol. 16, No. 2, 1973, pp. 157–160.MATHCrossRefGoogle Scholar
  12. Salmon, G., A Treatise on Higher Plane Curves, Stechert, NY, 1934, (Photographic Reprint of 3rd Ed. 1879 ), pp. 73.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • C. T. Lim
    • 1
  • M. T. Ensz
    • 1
  • M. A. Ganter
    • 1
  • D. W. Storti
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations