Skip to main content

Control of Vigilance and Behavior by Ascending Serotonergic Systems

  • Chapter

Part of the book series: Brain Dynamics ((BD))

Summary

The central serotonergic neurons are part of the (extrathalamic) reticulocortical projection systems of the vertebrate brain, which originate mainly in the paramedian and adjacent, more lateral part of the brain stem reticular core. Ascending projections from the dorsal raphe nucleus terminate within almost all neo- and allocortical areas as well as the thalamic nuclei, basal ganglia, amygdaloid complex, substantia nigra, and nucleus locus coeruleus; the projections from the central superior nucleus preferentially innervate the cortical fields, hippocampal formation, septal area, basal olfactory centers, and many hypothalamic nuclei. There is some complementary laminar specialization of terminal fields from either system within the neocortex, with axons from the dorsal raphe distributing preferentially to deep laminae and axons from the median raphe to superficial laminae. In general, there is overlapping of terminal fields from either ascending system within many targets. Due to a high degree of collateralization of their ascending main axons, individual raphe neurons innervate multiple targets along the neuraxis. Less than 40% of the contacts established by serotonergic axons to potential targets show membrane specializations; serotonin (5-hydroxytryptamine, 5-HT) released by these nonjunctional varicosities may exert widespread effects on many (noninnervated) cells via the extracellular space (neuromodulatory action). Some of the serotonin neurons synthesize peptides in addition to 5-HT [substance P, galanin, thyrotropin-releasing hormone (TRH), enkephalins] which may influence the sensitivity of 5-HT binding sites apart from acting as transmitters via specific peptide receptors. The effects of 5-HT are transmitted onto the target cells by diverse types of binding sites which belong to two subclasses of the G-protein superfamily of receptors (coupled to adenylate cyclase or coupled to phosphoinositide hydrolysis) and the ligand-gated ion channel superfamily. The number (and the sensitivity) of the 5-HT-l receptors in limbic brain regions are influenced by sex steroids (mainly estrogens), and so are the behavioral consequences of 5-HT-l receptor activation (e.g., female sexual behavior across the estrous cycle).

Serotonin appears to influence a wide variety of complex behaviors (for avoiding punishment or frustration in conflict, aversive, and anxiety- inducing situations; for maintaining social interaction patterns and controlling of aggression and impulsivity, appetite, and pain sensitivity and response threshold of various excitatory and inhibitory neurons), suggesting that 5-HT provides protection of the individual against irritating, noxious, or destructive effects of sensory (over)stimulation, to provide accomodation to stress and facilitate recuperative behavior at rest. The serotonergic systems accomplish this task by adjusting target cell responsiveness to the prevailing vigilance conditions. Serotonin neurons thus display rather stable firing patterns across the sleep/wake cycle. The clinical correlates of dysregulated serotonergic transmission and therapeutic strategies for correlating 5-HT-related psychopathology and abnormal behavior are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK (1990): Serotonin-induced inward current in rat facial motoneurons: Evidence for mediation by G proteins but not protein kinase C. Brain Res 524:171–174

    Google Scholar 

  • Aghajanian GK, Sprouse JS, Rasmussen K (1987): Physiology of the midbrain serotonin system. In: Psychopharmacology, The Third Generation of Progress, Meltzer HY, ed. New York: Raven

    Google Scholar 

  • Aghajanian GK, Sprouse JS, Sheldon P, Rasmussen K (1990): Electrophysiology of the central serotonin system: Receptor subtypes and transducer mechanisms. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci, 600:93–103

    Google Scholar 

  • Andrade R, Nicoll RA (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurons of the rat hippocampus recorded in vitro. J Physiol. (Lond) 394:99–124

    Google Scholar 

  • Araneda R, Andrade R (1991): 5-Hydroxytryptamine-2 and 5-hydroxytryptamine-1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412

    Google Scholar 

  • Audet MA, Descarriers L, Doucet G (1989): Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex. J Chem Neuroanat 2:29–44

    Google Scholar 

  • Azmitia EC (1987): The CNS serotonergic system: Progression toward a collaborative organization. In: Psychopharmacology: The Third Generation of Progress, Meltzer HY, ed. New York: Raven Press

    Google Scholar 

  • Azmitia EC, Gannon PJ (1986): The primate serotonergic system: A review of human and animal studies and a report on macaca fascicularis. Adv Neurol 43:407–468

    Google Scholar 

  • Azmitia EC, Segal M (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neur 179:641–668

    Google Scholar 

  • Barnes DB (1988): New data intensify the agony over ecstasy. Science 239:864–866

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Naylour RH, Tyers MB (1989): 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 338:762–763

    Google Scholar 

  • Basbaum AI, Fields HL (1984): Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7:309–338

    Google Scholar 

  • Bassant MH, Ennouri K, Lamour Y (1990): Effects of iontophoretically applied monoamines on somatosensory cortical neurons of unanesthetized rats. Neuroscience 39:431–439

    Google Scholar 

  • Baumgarten HG (1974): Biogenic monoamines in the cyclostome and lower vertebrate brain. Progress Histochem Cytochem 4:1–90

    Google Scholar 

  • Baumgarten HG (1991): Neuroanatomie und Neurophysiologie des zentralen Serotoninsystems. In: Serotonin: Ein funktioneller Ansatz für die psychiatrische Diagnose und Therapie, Heinrich K, Hippius H, Pöldinger W, eds. Berlin-Heidelberg-New York: Springer-Verlag

    Google Scholar 

  • Baumgarten HG, Lachenmayer L (1985): Anatomical features and physiological properties of central serotonin neurons. Pharmacopsychiat 18:180–187

    Google Scholar 

  • Baumgarten HG, Zimmermann B (1992): Cellular and subcellular targets of neurotoxins: The concept of selective vulnerability. In: Handb Exp Pharmacol, Vol 102, Herken H, Hucho F, eds. Berlin-Heidelberg-New York: Springer

    Google Scholar 

  • Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988): Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic study. J Comp Neur 273:99–119

    Google Scholar 

  • Bianchi C, Siniscalchi A, Beani L (1990): 5-HT1A agonists increase and 5-HT3 agonists decrease acetylcholine efflux from the cerebral cortex of freely-moving guinea-pigs. Br J Pharmacol 101:448–452

    Google Scholar 

  • Blier P, DeMontigny C, Chaput Y (1987): Modifications of the serotonin system by antidepressant treatments: Implications for the therapeutic response in major depression. J Psychopharmacol 7:24S–35S

    Google Scholar 

  • Blier PC, De Montigny C, Chaput Y (1988): Electrophysiological assessment of the effects of antidepressant treatments on the efficacy of 5-HT neurotransmission. Clin Neuropharmacol 11(2):S1–S10

    Google Scholar 

  • Blois R, Bovier P, Gaillard JM, Tissot R (1990): Serotonergic re-uptake inhibition and depression: The effects of fluvoxamine on sleep in depressed patients. In: Serotonin: From Cell Biology to Pharmacology and Therapeutics, Paoletti R, Vanhoutte PM, Brunello N, Maggi FM, eds. Dordrecht-Boston-London: Kluwer

    Google Scholar 

  • Bloom FE, Hoffer BJ, Siggings GR, Baker JL, Nicoll RA (1972): Effects of serotonin on central neurons: Microiontophoretic administration. Fed Proc 31:97–106

    Google Scholar 

  • Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988): Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453:315–328

    Google Scholar 

  • Bobker DH, Williams JT (1990): Ion conductances affected by 5-HT receptor subtypes in mammalian neurons. TINS 13(5):169–173

    Google Scholar 

  • Bockaert J, Sebben M, Dumuis A (1990): Pharmacological characterization of 5-hydroxytryptamine 4 (5-HT4) receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: Effect of substituted benzamide derivatives. Mol Pharmacol 37:408–411

    Google Scholar 

  • Boddeke HWGM, Kalkman HO (1990): Zacopride and BRL 24924 induce an increase in EEG-energy in rats. Br J Pharmacol 101:281–284

    Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–576

    Google Scholar 

  • Broekkamp CL, Jenck F (1989): The relationship between various animal models of anxiety, fear-related psychiatric symptoms and response to serotonergic drugs. In: Behavioural Pharmacology of 5-HT, Bevan P, Cools A, Archer T, eds. Hillsdale, Hove and London: Lawrence Erlbaum

    Google Scholar 

  • Brown GL, Linnoila MI (1990): CSF serotonin metabolite (5-HIM) studies in depression, impulsivity, and violence. J Clin Psychiatry 51(4):31–43

    Google Scholar 

  • Brüning G, Kaulen P, Schneider U, Baumgarten HG (1990): Quantitative autoradiographic distribution and pharmacological characterization of (3H)buspirone binding to sections from rat, bovine and marmoset brain. Neural Transm 78:131–144

    Google Scholar 

  • Chaput Y, Araneda RC, Andrade R (1990): Pharmacological and functional analysis of a novel serotonin receptor in the rat hippocampus. Eur J Pharmacol 182:441–456

    Google Scholar 

  • Charney DS, Krystal JH, Delgado PL, Heninger GR (1990): Serotonin-specific drugs for anxiety and depressive disorders. Annu Rev Med 41:437–446

    Google Scholar 

  • Coccaro EF (1989): Central serotonin and impulsive aggression. Br J Psychiatry 155(8):52–62

    Google Scholar 

  • Coccaro EF, Siever W, Klar HM, Maurer G, Cochrane K, Cooper TB, Mohs RC, Davis KL (1989): Serotonergic studies in patients with affective and personality disorders. Arch Gen Psychiatry 46:587–598

    Google Scholar 

  • Coccaro EF, Siever W, Owen KR, Davis KL (1990): Serotonin in mood and personality disorders. In: Serotonin in Major Psychiatric Disorders, Coccaro EF, Murphy DL, eds. Washington-London: American Psychiatric Press

    Google Scholar 

  • Colino A, Halliwell JV (1987): Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73–77

    Google Scholar 

  • Costall B, Naylor RJ (1990): 5-Hydroxytryptamine: New receptors and novel drugs for gastrointestinal motor disorders. Scand J Gastroenterol 25:769–787

    Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988): Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neurosci 2(l):41–65

    Google Scholar 

  • Costall B, Coughlan J, Kelly ME, Naylor RJ, Tyers MB (1989): Scopolamineinduced deficits in a T-maze reinforced alternation task are attenuated by 5-HT3 receptor antagonists. Br J Pharmacol 98:636P

    Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1990): The psychopharmacology of 5-HT3 receptors. Pharmac Ther 47:181–202

    Google Scholar 

  • Csernansky JG, Poscher M, Fau UKF (1990): Serotonin in schizophrenia. In: Serotonin in Major Psychiatric Disorders, Coccaro EF, Murphy DL, eds. Washington-London: American Psychiatric Press

    Google Scholar 

  • Curran HV, Lader M (1986): The psychopharmacological effects of repeated doses of fluvoxamine, mianserin and placebo in healthy human subjects. Eur J Clin Pharmacol 29:601–607

    Google Scholar 

  • Curran HV, Shine P, Lader M (1986): Effects of repeated doses of fluvoxamine, mianserin and placebo on memory and measures of sedation. Psychopharmacology 89:360–363

    Google Scholar 

  • Dahlström A, Fuxe K (1964): Evidence for the existence of monoamine-containing neurons in the central nercous system. I. Demonstration of monoamines in cell bodies of brain stem neurons. Acta Physiol Scand (Suppl) 232:1–55

    Google Scholar 

  • Dalhouse AD (1976): Social cohesiveness, hypersexuality and irritability induced by p-CPA in the rat. Physiol Behav 17:679–686

    Google Scholar 

  • D’Amato RJ, Largent BL, Snowman AM, Snyder SH (1987): Selective labeling of serotonin uptake sites in rat brain by [3 H]Citalopram contrasted to labeling of multiple sites by [3 H]Imipramine. J Pharmacol Exp Therap 242(1):364–371

    Google Scholar 

  • Davis M, Sheard MH (1974): Habituation and sensitisation of the rat startle response: Effect of raphe lesions. Physiol Behav 12:425–431

    Google Scholar 

  • Deakin IFW (1989): 5-HT receptor subtypes in depression. In: Behavioural Pharmacology of 5-HT, Bevan P, Cools AR, Archer T, eds. Hillsdale, Hove and London: Lawrence Erlbaum

    Google Scholar 

  • Declerck AC, Wauquier A, van der Ham-Veltman PHM, Gelders Y (1987): Increase in slow wave sleep in human treated with the serotonin-5-HT2 antagonist ritanserin (The first exploratory polygraphic study). Curr Ther Res 41:427–432

    Google Scholar 

  • Den Boer JA, Westenberg HGM (1990): Serotonin function in panic disorder: A double blind placebo controlled study with fluvoxamine and ritanserin. Psychopharmacology 102:85–94

    Google Scholar 

  • Derkach V, Suprenant A, North RA (1989): 5-HT3 receptors are membrane ion channels. Nature 339:706–709

    Google Scholar 

  • De Souza EB, Kuyatt BL (1987): Autoradiographic localization of 3 H-paroxetinelabeled serotonin uptake sites in rat brain. Synapse 1:488–496

    Google Scholar 

  • Dumuis A, Bouhelal R, Sebben M, Bockaert JA (1988): 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Eur J Pharmacol 146:187–188

    Google Scholar 

  • Fishbein DH, Lozovsky D, Jaffe JH (1989): Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol Psychiatry 25:1049–1066

    Google Scholar 

  • Foote SL, Morrison JH (1987): Extrathalamic modulation of cortical function. Ann Rev Neurosci 10:67–95

    Google Scholar 

  • Fornal CA, Jacobs BL (1988): Physiological and behavioral correlates of serotonergic single-unit activity. In: Neuronal Serotonin, Osborne NN, Hamon M, eds. Chichester: Wiley

    Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990): Subtypes of receptors for serotonin. Ann Rev Pharmacol Toxicol 30:307–348

    Google Scholar 

  • Fuxe K, Agnati LF, von Euler G, Lundgren K, Zoli M, Bjelke B, Eneroth P, Ögren SO (1990): Galanin/5-HT receptor interactions. A new integrative mechanism in the control of 5-HT neurotransmission in the central nervous system. In: Serotonin: From Cell Biology to Pharmacology and Therapeutics, Paoletti R, Vanhoutte PM, Brunello N, Maggi FM, eds. Dordrecht-Boston-London: Kluwer Academic

    Google Scholar 

  • Gall C, Moore RY (1984): Distribution of enkephalin, substance P, tyrosine hydroxylase, and 5-hydroxytryptamine immunoreactivity in the septal region of the rat. J Comp Neurol 225:212–227

    Google Scholar 

  • Glazer EJ, Basbaum AI (1981): Immunohistochemical localization of leucineenkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. J Comp Neurol 196:377–389

    Google Scholar 

  • Goldman-Rakic PS, Lidov MS, Gallager DW (1990): Overlap of dopaminergic, adrenergic, and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10(7):2125–2138

    Google Scholar 

  • Gonzalez-Heydrich J, Peroutka SJ (1990): Serotonin receptor and reuptake sites: Pharmacologic significance. Clin Psychiatry 51(4):5–13

    Google Scholar 

  • Göthert M (1990): Presynaptic serotonin receptors in the central nervous system. In: Presynaptic Receptors and the Question of Autoregulation of Neurotransmitter Release, Kalsner S, Westfall TC, eds. Ann NY Acad Sci 604:102–112

    Google Scholar 

  • Graeff FG (1981): Minor tranquilizers and brain defense systems. Brazilian J Med Biol Res 14:239–265

    Google Scholar 

  • Graeff FG (1984): The anti-aversive action of minor tranquilizers. Trends Pharmacol Sci 5:230–233

    Google Scholar 

  • Graeff FG (1986): 5-Hydroxytryptamine, aversion, and anxiety. Behav Brain Sci 9:339–340

    Google Scholar 

  • Halliwell JV, Colino A (1990): Control of hippocampal pyramidal cell excitability by 5-HT. Neurosci Lett 38:S116

    Google Scholar 

  • Hamon M, Gozlan H, El Mestikawy S, Emerit MB, Bolanos F, Schechter L (1990): The central 5-HT1A receptors: Pharmacological, biochemical, functional, and regulatory properties. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:114–129

    Google Scholar 

  • Hartig PR (1989): Molecular biology of 5-HT reeceptors. TIPS 10:64–69

    Google Scholar 

  • Hartig PR, Hoffman BJ, Kaufman MJ, Hirata F (1990): The 5-HT1C receptor. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:149–167

    Google Scholar 

  • Heym J, Steinfels GF, Jacobs BL (1982): Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Res 251:259–276

    Google Scholar 

  • Higley JD, Suomi SJ, Linnoila M (1990): Developmental influences on the serotonergic system and timidity in the nonhuman primate. In: Serotonin in Major Psychiatric Disorders, Coccaro EF, Murphy DL, eds. Washington-London: American Psychiatric Press

    Google Scholar 

  • Hökfelt T, Ljungdahl A, Steinbusch H, Verhofstand A, Nilsson G, Brodin E, Pernow B Goldstein M (1978): Immunohistochemical evidence of substance-P like immunoreactivity in some 5-hydroxytryptamine containing neurons in the rat central nervous system. Neuroscience 3:517–538

    Google Scholar 

  • Hökfelt T, Terenius L, Kuypers HGJM, Dann O (1979): Evidence for enkephalin immunoreactive neurons in the medulla oblongata projecting to the spinal cord. Neurosci Lett 14:55–60

    Google Scholar 

  • Hökfelt T, Johansson O, Holets V, Meister B, Melander T (1987): Distribution of neuropeptides with special reference to their coexistence with classical transmitters. In: Psychopharmacology: The Third Generation of Progress Meltzer HY, ed. New York: Raven Press

    Google Scholar 

  • Hoffman BJ, Mezey E (1989): Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain. FEBS Lett 247:453–462

    Google Scholar 

  • Hudson JI, Pope HG, Jr (1990): Affective spectrum disorder: Does antidepressant response identify a family of disorders with a common pathophysiology? Am J Psychiatry 147(5):552–564

    Google Scholar 

  • Idzikowski C, Mills FJ, Glennard R (1986): 5-Hydroxytryptamine-2-antagonist increases human slow wave sleep. Brain Res 378:164–168

    Google Scholar 

  • Imai H, Steindler DA, Kitai ST (1986): The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380

    Google Scholar 

  • Innis RB, Nestler EJ, Aghajanian GK (1988): Evidence for G protein mediation of serotonin-and GABA?-induced hyperpolarization of rat dorsal raphe neurons. Brain Res 459:27–36

    Google Scholar 

  • Jacobs BL (1987): Central monoaminergic neurons: Single-unit studies in behaving animals. In: Psychopharmacology: The Third Generation of Progress, Meltzer HY, ed. New York: Raven Press

    Google Scholar 

  • Jacobs BL, Fornal CA, Wilkonson LO (1990): Neurophysiological and neurochemical studies of brain serotonergic neurons in behaving animals. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:260–271

    Google Scholar 

  • Kahn RS, van Praag HM, Wetzler S, Asnis GM, Barr G (1988): Serotonin and anxiety revisited. Biol Psychiatry 23:189–208

    Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987): Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330:746–748

    Google Scholar 

  • Kosofsky BE, Molliver ME (1987): The serotonergic innervation of cerebral cortex: Different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1:153–168

    Google Scholar 

  • Larkman P, Kelly JS (1990): 5-HT and noradrenaline-evoked depolarization of rat facial motoneurons in vitro: Mediated through K+ channel closure. Neurosci Lett 38:S117

    Google Scholar 

  • Lavoie B, Parent A (1990): Immunohistochemical study of the serotonergic innervation of the basal ganglia in the squirrel monkey. Comp Neur 299:1–16

    Google Scholar 

  • Lidov HGW, Grzanna R, Molliver ME (1980): The serotonin innervation of the cerebral cortex in the rat—An immunohistochemical analysis. Neuroscience 5:207–227

    Google Scholar 

  • Mann JJ, Arango V, Marzuk PM, Theccanat S, Reis DJ (1989): Evidence for the 5-HT hypothesis of suicide. Br J Psychiatry 155(8):7–14

    Google Scholar 

  • Martin P, Soubrié P, Puech AJ (1990): Reversal of helpless behavior by serotonin uptake blockers in rats. Psychopharmacology 101:403–407

    Google Scholar 

  • McCall RB, Aghajanian GK (1979): Serotonergic facilitation of facial motoneuron excitation. Brain Res 169:11–27

    Google Scholar 

  • McCormick DA, Williamson A (1989) Convergence and divergance of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86:8098–8102

    Google Scholar 

  • McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990): Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29(3):193–198

    Google Scholar 

  • Mellerup E, Langer SZ (1990): Validity of imipramine platelet binding sites as a biological marker of endogenous depression. Pharmacopsychiatry 23:113–117

    Google Scholar 

  • Molineaux SM, Jessell TM, Axel R, Julius D (1989): 5-HTlc receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci 86:6793–6797

    Google Scholar 

  • Molliver ME (1987): Serotonergic neuronal systems: What their anatomic organization tells us about function. J Clin Psychopharmacol 7(6):3S–23S

    Google Scholar 

  • Morrison JH, Foote SL (1986): Noradrenergic and serotonergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys. Compar Neurology 243:117–138

    Google Scholar 

  • Murphy DL, Pigott TA (1990): A comparative examination of a role for serotonin in obsessive compulsive disorder, panic disorder, and anxiety. J Clin Psychiatry 51(4):53–60

    Google Scholar 

  • Murphy DL, Zohar J, Benkelfat C, Pato MT, Pigott TA, Insel TR (1989): Obsessive-compulsive disorder as a 5-HT subsystem-related behavioural disorder. Br J Psychiatry 155(8):15–24

    Google Scholar 

  • Nedergaard S, Engberg I, Flatman JA (1987): The modulation of excitatory amino acid responses by serotonin in the cat neocortex in vitro. Cell Molec Neurobiol 7:367–379

    Google Scholar 

  • Nedergaard S, Bolam JP, Greenfield SA (1988): Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 333:174–177

    Google Scholar 

  • Newman ME, Lerer B (1988): Chronic electroconvulsive shock and desimipramine reduce the degree of inhibition by 5-HT and carbachol of forskolinstimulated adenylate cyclase in rat hippocampal membranes. Eur J Pharmacol 148:257–260

    Google Scholar 

  • Nieuwenhuys R (1985): Chemoarchitecture of the Brain. Berlin: Springer

    Google Scholar 

  • Nilsson OG, Strecker RE, Daszuta A, Björklund A (1988): Combined cholinergic and serotonergic denervation of the forebrain produces severe deficits in a spatial learning task in the rat. Brain Res 453:235–246

    Google Scholar 

  • Paiva T, Arriaga F, Wauquier A, Lara E, Largo R, Leitao JN (1988): Effects of ritanserin on sleep disturbances of dysthymic patients. Psychopharmacology 96:395–399

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984): Binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of 5-HT recognition site. Eur J Pharmacol 106:539–546

    Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987): Serotonin receptors in the human brainIII. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21(1):97–122

    Google Scholar 

  • Pelletier G, Steinbusch HWM, Verhofstad AAJ (1981): Immunoreactive substance P and serotonin are present in the same dense core vesicle. Nature 293:71–72

    Google Scholar 

  • Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of 3 H-serotonin, 3 H-lysergic acid diethylamide and 3 H-spiroperidol. Mol Pharmacol 6:687–699

    Google Scholar 

  • Puizillout JJ, Gaudin-Chazal G, Daszuta A, Seyfritz N, Ternaux JP (1979): Release of endogenous serotonin from “encephale isole” cats. II. Correlations with raphe neuronal activity and sleep and wakefulness. J Physiol 75:531–537

    Google Scholar 

  • Rasmussen K, Aghajanian GK (1990): Serotonin excitation of facial motoneurons: Receptor subtype characterization. Synapse 5:324–332

    Google Scholar 

  • Rasmussen K, Heym J, Jacobs BL (1984): Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats. Exp Neurol 83:302–317

    Google Scholar 

  • Reader TA, Ferron A, Descarries L, Jasper HH (1979): Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Res 160:217–229

    Google Scholar 

  • Richardson BP, Engel G (1986): The pharmacology and function of 5-HT3 receptors. Trends Neurosci 9:424–428

    Google Scholar 

  • Richter-Levin G, Segal M (1990): Effects of serotonin releasers on dentate granule cell excitability in the rat. Exp Brain Res 82:199–207

    Google Scholar 

  • Robinson SE (1983): Effect of specific serotonergic lesions on cholinergic neurons in the hippocampus, cortex and striatum. Life Sci 32:345–353

    Google Scholar 

  • Saletu B, Grünberger J, Rajna P (1983): Pharmaco-EEG profiles of antidepressants. Pharmacodynamic studies with fluvoxamine. Br J Clin Pharmac 15: 369S–384S

    Google Scholar 

  • Sanders-Bush E, Tsutsumi M, Bums KD (1990): Serotonin receptors and phosphatidylinositol turnover. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:224–236

    Google Scholar 

  • Santucci AC, Kanof PD, Haroutunian V (1990): Serotonergic modulation of cholinergic systems involved in learning and memory in rats. Dementia 1:151–155

    Google Scholar 

  • Schmidt AW, Peroutka SJ (1989): 5-Hydroxytryptamine receptor “families.” FASEB J 3:2242–2249

    Google Scholar 

  • Séguéla P, Watkins KC, Descarriers L (1989): Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J Comp Neurol 289:129–142

    Google Scholar 

  • Sharpley AL, Solomon RA, Fernando Al, da Roza Davis JM, Cowen PJ (1990): Dose-related effects of selective 5-HT2 receptor antagonists on slow wave sleep in humans. Psychopharmacol 101:568–569

    Google Scholar 

  • Sheldon PW, Aghajanian GK (1988): Serotonin (5-HT) and norepinephrine (NE) induce IPSPs in pyramidal cells of the piriform cortex: Evidence for a 5-HT2 and 1A activated interneuron. Soc Neurosci Abst 14:215

    Google Scholar 

  • Shenker A, Maayani S, Weinstein H, Green JP (1987): Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol 31:357–367

    Google Scholar 

  • Soubrié P (1986): Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–364

    Google Scholar 

  • Soubrié P (1988): Serotonin and behaviour, with special regard to animal models of anxiety, depression and waiting ability. In: Neuronal Serotonin, Osborne NN, Hamon M, eds. Chichester: Wiley

    Google Scholar 

  • Sprouse JS, Aghajanian GK (1988): Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: A comparative study with dorsal raphe neurons. Neuropharmacology 27:707–715

    Google Scholar 

  • Steinbusch HWM (1981): Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Neuroscience 4:557–618

    Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1983): The raphe nuclei of the rat brain stem: A cytoarchitectonic and immunohistochemical study. In: Chemical Neuroanatomy, Emson PC, ed. New York: Raven Press

    Google Scholar 

  • Törk I (1990): Anatomy of the serotonergic system. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:9–35

    Google Scholar 

  • Törk I, Hornung J-P (1990): Raphe nuclei and the serotonergic system. In: The Human Nervous System, Paxinos G, ed. San Diego: Academic Press

    Google Scholar 

  • Trulson ME, Jacobs BL (1979): Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Res 163:135–150

    Google Scholar 

  • Tyers MB (1990): 5-HT3 receptors. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:194–205

    Google Scholar 

  • Valzelli L (1984): Reflections on experimental and human pathology of aggression. Progr Neuro-Psychopharmacol Biol Psych 8:311–325

    Google Scholar 

  • Vanderwolf CH (1988): Cerebral activity and behavior: Control by central cholinergic and serotonergic systems. Int Rev Neurobiol 30:225–340

    Google Scholar 

  • Vanderwolf CH (1989): A general role for serotonin in the control of behavior: Studies with intracerebral 5,7-dihydroxytryptamine. Brain Res 504:192–198

    Google Scholar 

  • Vanderwolf CH, Leung LWS, Baker GB, Stewart DJ (1989): The role of serotonin in the control of cerebral activity: Studies with intracerebral 5,7-dihydroxytryptamine. Brain Res 504:181–191

    Google Scholar 

  • Vanderwolf CH, Baker GB, Dickson C (1990a): Serotonergic control of cerebral activity and behavior: Models of dementia. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:366–383

    Google Scholar 

  • Vanderwolf CH, Dickson CT, Baker GB (1990b): Effects of p-chlorophenylalanine and scopolamine on retention of habits in rats. Pharmacol Biochem Behav 35:847–853

    Google Scholar 

  • Van Praag HM (1988): Serotonergic mechanisms and suicidal behavior. Psychiatr Psychobiol 3:335–346

    Google Scholar 

  • Van Praag HM, Asnis GM, Kahn RS, Brown SL, Korn M, Harkavy Friedman JM, Wetzler S (1990): Nosological tunnel vision in biological psychiatry. In: The Neuropharmacology of Serotonin, Whitaker-Azmitia PM, Peroutka SJ, eds. Ann NY Acad Sci 600:501–510

    Google Scholar 

  • Waeber C, Schoeffter P, Hoyer D, Palacios JM (1990): The serotonin 5-HT1D receptor: A progress review. Neurochem Res 15(6):567–582

    Google Scholar 

  • Wallis DI, Elliott P (1991): The electrophysiology of 5-HT. In: Serotonin: Molecular Biology, Receptors and Functional Effects, Fozard JR, Saxena PR, eds. Basel, Boston, Berlin: Birkhäuser

    Google Scholar 

  • Waterhouse BD, Moises HC, Woodward DJ (1986): Interaction of serotonin with somatosensory cortical neuronal responses to afferent synaptic inputs and putative neurotransmitters. Brain Res Bull 17:507–518

    Google Scholar 

  • Wauquier A, Dugovic C, Janssen PAJ (1990): Changing views on the role of serotonergic mechanisms in the control of the sleep-wakefulness cycle. In: Serotonin: From Cell Biology to Pharmacology and Therapeutics, Paoletti R, Vanhoutte PM, Brunello N, Maggi FM, eds. Dordrecht-Boston-London: Kluwer

    Google Scholar 

  • Wilson MA, Ricaurte GA, Molliver ME (1989): Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience 28(1):121–137

    Google Scholar 

  • Yakel JL, Jackson MB (1988): 5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron 1:615–621

    Google Scholar 

  • Zemlan FP, Garver DL (1990): Depression and antidepressant therapy: Receptor dynamics. Progr Neuro-Psychopharmacol Biol Psych 14:503–523

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baumgarten, H.G. (1993). Control of Vigilance and Behavior by Ascending Serotonergic Systems. In: Zschocke, S., Speckmann, EJ. (eds) Basic Mechanisms of the EEG. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0341-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0341-4_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6715-7

  • Online ISBN: 978-1-4612-0341-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics