Soliton Turbulence in Nonlinear Optical Phenomena

  • A. B. Aceves
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 11)


Nonlinear optical physics, the study of the interaction of matter and intense electromagnetic fields in the visible spectrum, has become a very exciting and fruitful research topic for the applied scientist. This area, which started some 30 years ago, has already produced important applications in laser technology, optical communications and data storage to name some, and has potential applications such as all optical logic devices. It is also a continuous source of current theoretical research in the area of integrable and near integrable equations. It is well known, for example, that the nonlinear Schrödinger (NLS) equation and variations thereof, governs the dynamics of pulses in nonlinear dielectrics. The robustness of the known soliton solutions of the NLS equation [1], has been verified experimentally as optical pulses have been shown to propagate undistorted for thousands of kilometers in optical fibers [2].


Soliton Solution Modulational Instability Linear Refractive Index Thirring Model Optical Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.E. Zakharov and A.B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1971) (Soviet Physics JETP 34, 62 (1972)).Google Scholar
  2. [2]
    L.F. Mollenauer J.P. Gordon and M.N. Islam, IEEE J. of Quantum Electron. 22, 157 (1986); L.F. Mollenauer and K. Smith, Opt. Lett. 13, 675 (1988).CrossRefGoogle Scholar
  3. [3]
    K. Ikeda, H. Daido and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).CrossRefGoogle Scholar
  4. [4]
    D.W. McLaughlin, J.V. Moloney and A.C. Newell, Phys. Rev. Lett. 54, 681 (1985).CrossRefGoogle Scholar
  5. [5]
    S.A. Akhmanov, M.A. Vorontzov and V. Yu. Ivanov, Pis’ma Zh. Eksp. Teor. Fiz. 47, 611 (1988) (JETP lett. 47, 707 (1988)); S.A. Akhmanov, M.A. Vorontsov, V. Yu Ivanov, A.V. Larichev and N.I. Zheleznykh, J. Opt. Soc. Am. B 9, b78 (1992).Google Scholar
  6. [6]
    P.K. Jakobsen, S.G. Wenden, J.V. Moloney and A.C. Newell, “Turbulent patterns in wide-gain section lasers”, Annual Meeting Optical Society of America, Albuquerque NM. 1992.Google Scholar
  7. [7]
    E. Kuznetzov, A.C. Newell and V.E. Zakharov, Phys. Rev. Lett. 67, 3243 (1991); S. Dyachenko, A.C. Newell, A. Pushkarev and V.E. Zakharov, Physica D 57, 96 (1992).CrossRefGoogle Scholar
  8. [8]
    P. Coullet, L. Gl and F. Rocca, Opt. Commun. 70, 403 (1989).CrossRefGoogle Scholar
  9. [9]
    F.T. Arecchi, G. Giacomelli, P.L. Ramazza and S. Residori, Phys. Rv. Lett. 67, 3749 (1991).CrossRefGoogle Scholar
  10. [10]
    V.E. Zakharov, A.N. Pushkarev, V.F. Shvets and V.V. Yan’kov, Pis’ma Zh. Eksp. Teor. Fiz. 48, 79 (1988) (JETP Lett. 48, 83 (1988)); A.I. D’yachenko, V.E. Zakharov, A.N. Pushkarev, V.F. Shvets and V.V. Yan’kov, Zh. Eksp. Teor. Fiz. 96, 2026 (1989) (Sov. Phys. JETP 69, 1144 (1989)).Google Scholar
  11. [11]
    A.B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989).CrossRefGoogle Scholar
  12. [12]
    A.B. Aceves, C. De Angelis and S. Wabnitz, “Generation of Solitons in a Nonlinear Periodic Medium”, Opt. Lett. 17, 1566 (1993).CrossRefGoogle Scholar
  13. [13]
    A.B. Aceves and S. Wabnitz, “On the solutions of waves propagating in periodic nonlinear structures”, preprint (1993).Google Scholar
  14. [14]
    E.A. Kuznetsov and A.V. Mikhailov, Teor. Mat. Fiz. 30, 303 (1977); D.J. Kaup and A.C. Newell, Lett. Nuovo Cimento 20, 325 (1977).CrossRefGoogle Scholar
  15. [15]
    A.V. Mikhailov, JETP Lett. 32, 174 (1980); D. David, J. Hamad and S. Shnider, Lett. in Math. Phys., 8, 27 (1984).Google Scholar
  16. [16]
    L. Brillouin, Wave propagation in periodic structures, McGraw-Hill, New York (1946).Google Scholar
  17. [17]
    C.M. de Sterke, Phys. Rev. A 45, 8252 (1992).CrossRefGoogle Scholar
  18. [18]
    D.N. Christodoulides and R.I. Joseph, Phys. Rev. Lett. 62, 1746 (1989).CrossRefGoogle Scholar
  19. [19]
    W. Chen and D.L. Mills, Phys. Rev. Lett. 58, 160 (1987); D.L. Mills and S.E. Trullinger, Phys. Rev. B 36, 6269 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • A. B. Aceves

There are no affiliations available

Personalised recommendations