Advertisement

Minimum Problems for Integral Functionals

  • Gianni Dal Maso
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 8)

Abstract

In this chapter the direct method of the calculus of variations will be applied to prove the existence of minimum points for problems of the form
$$ \mathop {\min }\limits_{u \in {W^{1,p(\Omega )}}} (\int_\Omega {f(x,Du(x))dx + } \int_\Omega {g(x,u(x))dx).} $$
(2.1)
.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Gianni Dal Maso
    • 1
  1. 1.International School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations