Skip to main content

The Geometry of the Full Kostant-Toda Lattice

  • Chapter
Integrable Systems

Part of the book series: Progress in Mathematics ((PM,volume 115))

Abstract

The equations for the (finite, nonperiodic) Toda lattice can, as is well known, be written in Lax form,

$$\dot X(t) = [X(t),\Pi X(t)]$$

Here X is a symmetric tridiagonal matrix and Π is the projection onto the skew-symmetric summand in the decomposition of X into skew-symmetric plus upper triangular. The eigenvalues of X are constants of motion of (1), and the Toda lattice turns out to be a completely integrable Hamiltonian system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Arhangelskiĭ, “Completely integrable Hamiltonian systems on the group of triangular matrices”, Mat. Sb. 108, No. 4 (1979) 134–142.

    MathSciNet  Google Scholar 

  2. A. M. Bloch, H. Flaschka, T. Ratiu, “A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra”, Duke Math. J. 61 (1990) 41–65.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. A. Deift, L.-C. Li, T. Nanda. C. Tomei, “The Toda lattice on a generic orbit is integrable”, Comm. Pure Appl. Math. 39 (1986) 183–232.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Dixmier, Enveloping Algebras, North-Holland 1977.

    Google Scholar 

  5. H. Flaschka, L. Haine, “Variétés de drapeaux et réseaux de Toda”, Math. Z. 208 (1991) 545–556.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. M. Gel’fand, R. W. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math. 44 (1982) 279–312.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. M. Gel’fand, V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Uspehi Mat. Nauk 42:2 (1987) 107–134.

    MathSciNet  Google Scholar 

  8. M. M. Kapranov, “Chow quotients of Grassmannians, I”, preprint 1992.

    Google Scholar 

  9. B. Kostant, “Lie group representations on polynomial rings”, Am. J. Math. 85 (1963) 327–404.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math. 34 (1979) 195–338.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Kostant, “On Whittaker vectors and representation theory”, Invent. Math. 48 (1978) 101–184.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Moser, “Finitely many point masses on the line under the influence of an exponential potential”, in Springer Lecture Notes in Physics 38 (1975) 467–497.

    Article  Google Scholar 

  13. T. Oda, Convex Bodies and Algebraic Geometry, Springer-Verlag 1988.

    Google Scholar 

  14. A. G. Reiman, “Integrable Hamiltonian systems connected with graded Lie algebras”, Zap. Nauch. Sem. LOMI 95 (1980) 3–54.

    MathSciNet  Google Scholar 

  15. A. G. Reiman, M. S. Semënov-Tian-Shantsky, “Reduction of Hamiltonian systems, affine Lie algebras and Lax equations”, Invent. Math. 54 (1979) 81–100.

    Article  MathSciNet  Google Scholar 

  16. S. Singer, Ph. D. Dissertation, Courant Institute, 1991.

    Google Scholar 

  17. S. Singer, “Some maps from the full Toda lattice are Poisson,” Phys. Lett. A 174 (1993), 66–70.

    Google Scholar 

  18. A. Thimm, “Integrable geodesic flows on homogeneous spaces”, Ergod. Th. & Dynam. Sys. 1 (1982) 495–517.

    MathSciNet  Google Scholar 

  19. V. V. Trofimov, “Euler equations on Borel subalgebras of semisimple Lie algebras”, Izvestija 43 (1979) 714–732.

    MathSciNet  MATH  Google Scholar 

  20. V. V. Trofimov, “Finite-dimensional representations of Lie algebras and completely integrable systems”, Mat. Sb. 11 (1980) 610–621.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ercolani, N.M., Flaschka, H., Singer, S. (1993). The Geometry of the Full Kostant-Toda Lattice. In: Babelon, O., Kosmann-Schwarzbach, Y., Cartier, P. (eds) Integrable Systems. Progress in Mathematics, vol 115. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0315-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0315-5_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6703-4

  • Online ISBN: 978-1-4612-0315-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics