Advertisement

Hyperelliptic Curves that Generate Constant Mean Curvature Tori in ℝ3

  • N. M. Ercolani
  • H. Knörrer
  • E. Trubowitz
Chapter
Part of the Progress in Mathematics book series (PM, volume 115)

Abstract

Let u be a solution of the elliptic-sinh Gordon equation
$$ {u_{w\bar w}} + \sinh u = 0$$
(1)
on the simply connected domain Ω ⊂ ℂ. There is an algorithm that associates an immersion F of Ω in ℝ3 to u with constant mean curvature ½ (see e.g. [3]). To implement ite first solves
$$ {\psi _w} = - \frac{1}{2}\left( {\begin{array}{*{20}{c}} {{u_w}} \\ i \end{array}\begin{array}{*{20}{c}} i \\ { - {u_w}} \end{array}} \right)\psi $$
(1)
$$ {\psi _\varpi } = - \frac{1}{{2.1}}\left( {\begin{array}{*{20}{c}} 0 \\ {{e^u}} \end{array}\begin{array}{*{20}{c}} {{e^{ - u}}} \\ 0 \end{array}} \right)\psi $$
(1)
for
$$ \psi = \left( {\begin{array}{*{20}{c}} {{\psi _1}} \\ {{\psi _2}} \end{array}\begin{array}{*{20}{c}} {(w)} \\ {(w)} \end{array}} \right)$$
on Ω. Equation (1) is the consistency condition for (2) and (3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    U. Abresch, “Constant mean curvature tori in terms of elliptic functions”, J. reine u. angew. Math., 394 (1987), 169–192.MathSciNetGoogle Scholar
  2. [2]
    A. Bobenko, “All constant mean curvature tori in ℝ3, S 3, ℍ3 in terms of theta-functions”, Math. Ann., 290 (1991), 209–245.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    A. Bobenko, “Constant mean curvature surfaces and integrable equations”, Russ. Math. Surveys, 46 (1991), 1–45.MathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Farkas, I. Kra, “Riemann Surfaces”. Graduate Texts in Mathematics, 71, Springer Verlag, 1980.Google Scholar
  5. [5]
    N. Hitchin, “Harmonic maps from a 2-torus to the 3-sphere”, J. Diff. Geom., 31 (1990), 627–710.MathSciNetMATHGoogle Scholar
  6. [6]
    U. Pinkall, I. Sterling, “On the classification of constant mean curvature tori”, Ann. Math., 130 (1989), 407–451.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    H. Wente, “Counterexample to a conjecture of Hopf”, Pacific J. Math., 121 (1986), 193–246.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    H. Wente, “Constant Mean Curvature Immersions of Enneper Type”, Mem. AMS 100 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • N. M. Ercolani
    • 1
  • H. Knörrer
    • 2
  • E. Trubowitz
    • 2
  1. 1.The University of ArizonaTucsonUSA
  2. 2.ETH-ZentrumZürichSwitzerland

Personalised recommendations