Bihamiltonian Manifolds And Sato’s Equations

  • Paolo Casati
  • Franco Magri
  • Marco Pedroni
Part of the Progress in Mathematics book series (PM, volume 115)


This paper is a concise introduction to Sato’s equations from the point of view of Hamiltonian mechanics. It aims to show that the theory of soliton equations may be completely built on the study of the Casimir functions of a pencil of Poisson brackets on a Poisson manifold.


Poisson Bracket Pseudodifferential Operator Poisson Manifold Soliton Equation Laurent Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Casati, F. Magri, M. Pedroni, Bihamiltonian Manifolds and τ-Junction, Mathematical Aspects of Classical Field Theory 1991 (M.J. Gotay, J.E. Mardsen, V.E. Moncrief, eds.), Contemporary Mathematics 132, American Mathematical Society, Providence.Google Scholar
  2. 2.
    A. C. Newell, Solitons in Mathematics and Physics, S.I.A.M., Philadelphia, 1985.CrossRefGoogle Scholar
  3. 3.
    E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Transformation Groups for Soliton Equations, Proceedings of R.I.M.S. Symposium on “Nonlinear Integrable Systems-Classical Theory and Quantum Theory” (1983), World Scientific, Singapore.Google Scholar
  4. 4.
    H. Flaschka, A. C. Newell, T. Ratiu, Kac-Moody Lie Algebras and Soli-ton Equations, Physica 9D (1983), 300–323.MathSciNetGoogle Scholar
  5. 5.
    Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis Structures, Ann. Inst. Poincaré 53 (1990), 35–81.MathSciNetMATHGoogle Scholar
  6. 6.
    V. G. Drinfeld, V. V. Sokolov, Lie Algebras and Equations of Korteweg-de Vries Type, J. Sov. Math. 30 (1985), 1975–2036.CrossRefGoogle Scholar
  7. 7.
    P. Casati, M. Pedroni, Drinfeld Sokolov Reduction on a Simple Lie Algebra from the Bihamiltonian Point of View, Lett. Math. Phys. 25 (1992), 89–101.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    M. A. Semenov-Tian-Shansky, What is the classical r-matrix?, Funct. Anal. and Appl. 17 (1983), 259–272.CrossRefGoogle Scholar
  9. 9.
    D. Mumford, Tata Lectures on Theta II, Birkhäuser, Boston, 1984.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Paolo Casati
    • 1
  • Franco Magri
    • 2
  • Marco Pedroni
    • 3
  1. 1.Dottorato in MatematicaUniversità di TorinoTorinoItaly
  2. 2.Dipartimento di Matematica dell’Università di MilanoMilanoItaly
  3. 3.Dottorato in MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations