Learning Control and Related Problems in Infinite-Dimensional Systems

  • Y. Yamamoto
Part of the Progress in Systems and Control Theory book series (PSCT, volume 14)


The basic features of a special type of learning control scheme, currently known as repetitive control are reviewed. It is seen that this control scheme also induces varied interesting theoretical problems—particularly those related to infinite-dimensional systems. They include such problems as the internal model principle, minimal representation of transfer functions, fractional representations, stability characterizations, correspondence of internal and external stability, etc. This article intends to give a comprehensive overview of the repetitive control scheme as well as the discussion of these related theoretical problems for infinite-dimensional systems.


Transfer Function Exponential Stability Imaginary Axis Exponential Type Learn Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” J. Robotic System, 1: 123–149, 1984.CrossRefGoogle Scholar
  2. [2]
    D. Balala, “Učiaci sa servosystém priemyselného robota (Learning servosystem of industrial robots),” Zborník Vedeckých Prác: 451–457 1985.Google Scholar
  3. [3]
    J. S. Baras, R. W. Brockett and P. A. Fuhrmann, “State-space models for infinite-dimensional systems,” IEEE Trans. Autom. Contr., AC-19: 693–700, 1974.MathSciNetGoogle Scholar
  4. [4]
    G. Bengtsson, “Output regulation and internal models—a frequency domain approach,” Automatica, 13: 333–345, 1977.MATHCrossRefGoogle Scholar
  5. [5]
    R. P. Boas Jr., Entire Functions, Academic Press, 1954.MATHGoogle Scholar
  6. [6]
    F. M. Callier and C. A. Desoer, “An algebra of transfer functions for distributed linear time invariant systems,” IEEE Trans. Circuit and Systems, CAS-25: 651–662, 1978 (Correction in vol. 26, p. 360).MathSciNetCrossRefGoogle Scholar
  7. [7]
    F. M. Callier and C. A. Desoer, “Stabilization, tracking and disturbance rejection in multivariable convolution systems,” Annales de la Societé Scientifique de Bruxelles, 94: 7–51, 1980.MathSciNetMATHGoogle Scholar
  8. [8]
    F. M. Callier and C. A. Desoer, “Distributed system transfer functions of exponential order,” Int. J. Control 43: 1353–1373, 1986.MATHCrossRefGoogle Scholar
  9. [9]
    T. Carleman, L’Integrale de Fourier et Questions qui s’y Rattachent, Institut Mittag-Leffier, Uppsala, 1944.MATHGoogle Scholar
  10. [10]
    M. J. Chen and C. A. Desoer, “Necessary and sufficient conditions for robust stability of linear distributed feedback systems,” Int. J. Control, 35: 255–267, 1982.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    K.-K. Chew and M. Tomizuka, “Digital control of repetitive errors in disk drive systems,” IEEE Control Systems Magazine, 10–1: 16–20, 1990.CrossRefGoogle Scholar
  12. [12]
    R. F. Curtain, “Equivalence of input-output stability and exponential stability for infinite dimensional systems,” Math. Systems Theory, 21: 19–48, 1988.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    R. F. Curtain, “A synthesis of time and frequency domain methods for the control of infinite-dimensional systems: a system theoretic approach,” SIAM Frontiers in Applied Mathematics,1989.Google Scholar
  14. [14]
    R. F. Curtain, H. Logemann, S. Townley and H. Zwart, “Wellposedness, stabilizability and admissibility for Prichard-Salamon systems,” Report 260, Institut für Dynamische Systeme, Universität Bremen, 1992.Google Scholar
  15. [15]
    C. A. Desoer and C. L. Gustafson, “Design of multivariable feedback systems with simple unstable plant,” IEEE Trans. Autom. Control, AC-29: 901–908, 1984.MathSciNetCrossRefGoogle Scholar
  16. [16]
    C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, Academic Press, 1975.MATHGoogle Scholar
  17. [17]
    W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, 1969.MATHGoogle Scholar
  18. [18]
    J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, “State-space solutions to standard H and H2 control problems,” IEEE Trans. Autom. Control, AC-34: 831–847, 1989.MathSciNetCrossRefGoogle Scholar
  19. [19]
    P. M. G. Ferreira and F. M. Callier, “The tracking and disturbance rejection problem for distributed parameter systems,” IEEE Trans. Autom. Control, AC-27: 478–481, 1982.MathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Foias, A. Tannenbaum and G. Zames, “Some explicit formulae for the singular values of certain Hankel operators with factorizable symbol,” SIAM J. Math. Anal., 19: 1081–1089, 1988.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    B. A. Francis, “The multivariable servomechanism problem from the input-output viewpoint,” IEEE Trans. Autom. Control, AC-22: 322–328, 1977.MathSciNetCrossRefGoogle Scholar
  22. [22]
    B. A. Francis, A Course in H Control Theory, Lecture Notes in Control and Information Sci., 88, Springer, 1987.MATHCrossRefGoogle Scholar
  23. [23]
    B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” J. Appl. Math. and Optimiz., 2: 170–194, 1975.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    P. A. Fuhrmann, “On realization of linear systems and applications to some questions of stability” Math. Systems Theory, 9: 132–141, 1974.MathSciNetCrossRefGoogle Scholar
  25. [25]
    P. A. Fuhrmann, “Algebraic system theory: an analyst’s point of view,” J. Franklin Inst., 301: 521–540 1976.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    P. A. Fuhrmannn, Linear Systems and Operators in Hilbert Space,McGraw-Hill, 1981.Google Scholar
  27. [27]
    T. T. Georgiou and M. C. Smith, “Graphs, causality and stabilizability: linear, shift-invariant systems on £2[0, ∞),” Proc. 31st CDC: 1024–1029,1992.Google Scholar
  28. [28]
    J. K. Hale, Theory of Functional Differential Equations, Springer, 1977.MATHCrossRefGoogle Scholar
  29. [29]
    S. Hara, Y. Yamamoto, T. Omata and M. Nakano, “Repetitive control system: a new type servo system for periodic exogenous signals,” IEEE Trans. Autom. Control, AC-33: 659–668, 1988.MathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Hara, M. Tetsuka and R. Kondo, “Ripple attenuation in digital repetitive control systems,” Proc. 29th CDC: 1679–1684, 1990.Google Scholar
  31. [31]
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, 1962.MATHGoogle Scholar
  32. [32]
    M. Ikeda and M. Takano, “Repetitive control for systems with nonzero relative degree,” Proc. 29th CDC: 1667–1672, 1990.Google Scholar
  33. [33]
    T. Inoue, M. Nakano, T. Kubo, S. Matsumoto and H. Baba, “High accuracy control of a proton synchrotron magnet power supply,” Proc. IFAC 8th World Congress, XX: 216–221, 1981.Google Scholar
  34. [34]
    Y. Inouye, “Parametrization of compensators for linear systems with transfer functions of bounded type,” Proc. 27th CDC: 2083–2088, 1988.Google Scholar
  35. [35]
    C. A. Jacobson and C. N. Nett, “Linear state-space systems in infinite-dimensional space: the role and characterization of joint stabilizability/detectability,” IEEE Trans. Autom. Control, 33: 541–549, 1988.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    A. Kaneko, Introduction to Hyperfunctions,Reidel, 1988.MATHGoogle Scholar
  37. [37]
    P. P. Khargonekar and K. Poola, “Robust stabilization of distributed systems,” Automatica, 22: 77–84, 1986.MATHCrossRefGoogle Scholar
  38. [38]
    F. Lindelöf, “Sur les fonctions entieres d’ordre entier,” Ann. Sci. Ecole Norm. Sup., (3) 22: 369–395, 1905.MathSciNetMATHGoogle Scholar
  39. [39]
    H. Logemann, “On the transfer matrix of a neutral system: Characterizations of exponential stability in input-output terms,” Syst. Contr. Letters, 9: 393–400, 1987.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    H. Logemann, “Stabilization and regulation of infinite-dimensional systems using coprime factorizations,” Report 266,Institut für Dynamische Systeme, Universität Bremen,to appear in Proc. 10th Int. Con f. on Analysis and Optimization of Systems: State and Frequency Domain Approach for Infinite-Dimensional Systems, 1992.Google Scholar
  41. [41]
    T. Mita and E. Kato, “Iterative control and its application to motion control of robot arm—a direct approach to servo problems,” Proc. 24th CDC: 1393–1398, 1985.Google Scholar
  42. [42]
    N. Nakano and S. Hara, “Microprocessor-based repetitive control,” Microprocessor-Based Control Systems, Reidel, 1986.Google Scholar
  43. [43]
    N. Nakano, T. Inoue, Y. Yamamoto and S. Hara, Repetitive Control, SICE Publications, 1989 (in Japanese).Google Scholar
  44. [44]
    D. A. O’Connor and T. J. Tarn, “On stabilization by state feedback for neutral differential difference equations,” IEEE Trans. Autom. Control, 28: 615–618, 1983.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    T. Omata, S. Hara and M. Nakano, “Nonlinear repetitive control with application to trajectory control of manipulators,” J. Robotic System, 4: 631–652, 1987.CrossRefGoogle Scholar
  46. [46]
    R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloquium Publ., 19, 1934.MATHGoogle Scholar
  47. [47]
    A. J. Prichard and D. Salamon, “The linear quadratic control problem for infinite-dimensional systems with unbounded input and output operators,” SIAM J. Control & Optimiz., 25: 121–144, 1987.CrossRefGoogle Scholar
  48. [48]
    R. Rebarber, “Conditions for the equivalence of internal and external stability for distributed parameter systems,” Proc. 30th CDC: 3008–3013, 1991.Google Scholar
  49. [49]
    W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.MATHGoogle Scholar
  50. [50]
    D. E. Rumelhart, J. L. McClelland and PDP Research Group, “Learning internal representations by error propagation,” Parallel Distributed Processing Vol.1: 318–362, The MIT Press, 1986.Google Scholar
  51. [51]
    D. Salamon, Control and Observation of Neutral Systems, Pitman, 1984.MATHGoogle Scholar
  52. [52]
    L. Schwartz, Théorie des Distributions, 2me Edition, Hermann, 1966.MATHGoogle Scholar
  53. [53]
    M. Tomizuka, T.-S. Tsao and K.-K. Chew, “Analysis and synthesis of discrete-time repetitive controllers,” Trans. ASME, J. Dynamic Syst. Measurement and Control, 11: 353–358, 1989.CrossRefGoogle Scholar
  54. [54]
    F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.MATHGoogle Scholar
  55. [55]
    R. Triggiani, “On the stabilizability problem in Banach space,” J. Math. Anal. Appl., 52: 383–403, 1975.MathSciNetMATHCrossRefGoogle Scholar
  56. [56]
    Ya Z. Tsypkin, “Self-learning—What is it?” IEEE Trans. Autom. Control, AC-13: 608–612, 1968.MathSciNetCrossRefGoogle Scholar
  57. [57]
    G. Weiss, “Admissibility of unbounded control operators,” SIAM J. Control & Optimiz., 27: 527–545, 1989.MATHCrossRefGoogle Scholar
  58. [58]
    Y. Yamamoto, “Pseudo-rational input/output maps and their realizations: a fractional representation approach to infinite-dimensional systems,” SIAM J. Control & Optimiz., 26: 1415–1430, 1988.MATHCrossRefGoogle Scholar
  59. [59]
    Y. Yamamoto, “Reachability of a class of infinite-dimensional linear systems: an external approach with applications to general neutral systems,” SIAM J. Control & Optimiz., 27: 217–234, 1989.MATHCrossRefGoogle Scholar
  60. [60]
    Y. Yamamoto, “Equivalence of internal and external stability for a class of distributed systems,” Math. Control,Signals and Systems, 4: 391–409, 1991.MathSciNetMATHCrossRefGoogle Scholar
  61. [61]
    Y. Yamamoto and S. Hara, “Relationships between internal and external stability with applications to a servo problem,” IEEE Trans. Autom. Control, AC-33: 1044–1052, 1988.MathSciNetCrossRefGoogle Scholar
  62. [62]
    Y. Yamamoto and S. Hara, “Internal and external stability and robust stability condition for a class of infinite-dimensional systems,” Automatica, 28: 81–93, 1992.MathSciNetMATHCrossRefGoogle Scholar
  63. [63]
    J. Zabczyk, “A note on C 0-semigroups,” Bull. l’Acad. Pol. de Sc. Serie Math., 23: 895–898, 1975.MathSciNetMATHGoogle Scholar
  64. [64]
    K. Zhou and P. P. Khargonekar, “On the weighted sensitivity minimization problem for delay systems,” Syst. Control Lett., 8: 307–312, 1987.MathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    H. Zwart, Y. Yamamoto and Y. Gotoh, “On the Stability Uniformity of Infinite-Dimensional Systems,” to appear in Proc. 10th Int. Conf. on Analysis and Optimization of Systems: State and Frequency Domain Approach for Infinite-Dimensional Systems, 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Y. Yamamoto
    • 1
  1. 1.Division of Applied Systems Science, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations