Skip to main content

Neural Networks for Adaptive Control and Recursive Identification: A Theoretical Framework

  • Chapter
Book cover Essays on Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 14))

Abstract

Massively parallel arrays of simple processing elements, the so-called “neural” network models, can be used to greatly enhance and extend techniques for identification and control of complex, nonlinear dynamic systems. However, the design of practical algorithms capable of ensuring prespecified performance levels requires a comprehensive, cross-disciplinary treatment, drawing techniques and insights from such diverse fields as machine learning, constructive approximation, nonlinear dynamic stability, and robust systems analysis. The goal of this paper is to review techniques for assembling all of these elements into an integrated and systematic framework, highlighting both constructive neural network analysis and synthesis methods, as well as algorithms for adaptive prediction and control with guaranteed levels of performance. These designs also contain supervised network training methods as a special case, and hence provide tools for evaluating the quality of a training set, avoiding overtraining, and maximizing the speed of learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B. D. O., “Adaptive systems, lack of persistency of excitation and bursting phenomena”, Autom.atica, vol. 21, 247–258, 1985.

    MATH  Google Scholar 

  2. Annaswamy, A., and Seto, D., “Adaptive control of a class of nonlinear systems”, Proc. 7th Yale Workshop Adaptive and Learning Systems, New Haven, CT, May 1992.

    Google Scholar 

  3. Arsac, J., Fourier Transforms and the Theory of Distributions, Prentice-Hall, Englewood Cliffs, N.J., 1966.

    Google Scholar 

  4. Astrom, K. J., “Theory and applications of adaptive control: a survey”, Automatica, vol. 19, 471–486, 1983.

    Article  Google Scholar 

  5. Astrom, K. J., and Wittenmark, B., Adaptive Control, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  6. Atkeson, C. G., “Memory-based approaches to approximating continuous functions”, Proc. 6th Yale Workshop on Adaptive and Learning Systems, 212–217, Yale, New Haven, CT, 1990.

    Google Scholar 

  7. Atkeson, C. G., and Reinkensmeyer, D. J., “Using associative content-addressable memories to control robots”, in Neural Networks for Control, T.W. Miller, R.S. Sutton, and P.J. Werbos, eds., MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  8. Bastin, G., Bitmead, R.R., Campion, G., and Gevers, M., “Identification of linearly overparameterized nonlinear systems”, IEEE Trans. Autom. Control, vol. 37, 1073–1078, July 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellman, R., Adaptive Control Processes-A Guided Tour, Princeton University Press, Princeton, 1961.

    MATH  Google Scholar 

  10. Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, New York, NY, 1965.

    MATH  Google Scholar 

  11. Broomhead, D. S., and Lowe, D., “Multivariable functional interpolation and adaptive networks”, Complex Systems,2, 321–355, 1988.

    MathSciNet  MATH  Google Scholar 

  12. Butzer, P.L., Splettstosser and Stens, R.L., “The sampling theorem and linear prediction in signal analysis”, Jber. d., Dt. Math.-Verein, vol. 90, 1–70, 1988.

    MathSciNet  MATH  Google Scholar 

  13. Chen, F.-C., and Khalil, H.K, “Adaptive control of nonlinear discrete-time systems using neural networks”, preprint Electrical Engineering Dept, Michigan State Univ., East Lansing, Mich, 1991.

    Google Scholar 

  14. Chen, S., Billings, S.A, and Grant, P.M., “Non-linear system identification using neural networks”, Int. J. Control, vol. 51, 1191–1214, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, S., Cowan, C. F. N., Billings, S.A., and Grant, P.M., “Parallel recursive error prediction algorithm for training layered neural networks”, Intl. J. Control, vol. 51, 1215–1228, 1990.

    Article  MathSciNet  Google Scholar 

  16. Chen, S., Cowan, C. F. N., Billings, S.A., and Grant, P.M., “Practical identification of NARMAX models using radial basis functions”, Intl. J. Control, vol. 52, 1327–1350, 1990.

    Article  MATH  Google Scholar 

  17. Chester, D., “Why two hidden layers are better than one”, IEEE Intl. Conf. on Neural Nets., I, 265–268, Washington, DC, 1990.

    Google Scholar 

  18. Chui, C. K., An Introduction to Wavelets, Academic Press, San Diego, 1992.

    MATH  Google Scholar 

  19. Cruz, Jr. J. B., System Sensitivity Analysis, Dowden,Hutchinson and Ross, Inc, Stroudsburg, PA, 1973.

    Google Scholar 

  20. Cybenko, G., “Approximations by superposition of a sigmoidal function”, Math. Cont., Sig, and Sys., vol. 2, 303–314, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  21. Daugman, J. G., “Complete discrete 2D Gabor transforms by neural networks for image analysis and compression”, IEEE Trans. ASSP,36, 1169–1179, 1988.

    Article  MATH  Google Scholar 

  22. Egardt, B., Stability of adaptive controllers, Springer-Verlag, Berlin, 1979.

    Book  MATH  Google Scholar 

  23. Fu, K. S., “Learning control systems”, in Computer and Information Sciences, Julius Ton and Richard Wilcox, ed., Spartan Books, Washington, pp. 318–343, 1964.

    Google Scholar 

  24. Fu, K. S., and Waltz, M.D., “A heuristic approach to reinforcement-learning control systems”, IEEE Trans. Autom. Cont., vol. 10, 390–398, 1965.

    Article  Google Scholar 

  25. Funahashi, K., “On the approximate realization of continuous mappings by neural networks”, Neural Networks,2, 183–192, 1989.

    Article  Google Scholar 

  26. Gabor, D., “Theory of communication”, Jour. IEE, 93, 429–457, 1946.

    Google Scholar 

  27. Girosi, F. and Anzellotti, G. “ Rates of convergence of approximation by translates”, Artificial Intelligence Lab. Memo, No. 1288, MIT, Cambridge, MA, (in preparation), 1992.

    Google Scholar 

  28. Girosi, F., and Poggio, T., “Networks and the best approximation property”, Biological Cybernetics, vol 63, 169–176, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  29. Girosi, F., and Poggio, T., “Representation properties of networks: Kolmogorov’s theorem is irrelevant”, Neural Computation, vol. 1, 465–469, 1989.

    Article  Google Scholar 

  30. Goodwin, G. C., and Sin K. S., Adaptive Filtering, Prediction, and Control, Prentice-Hall, Englewood Cliffs, NJ, 1984.

    MATH  Google Scholar 

  31. Grossberg, S., Neural Networks and Natural Intelligence, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  32. Grossberg, S., “Nonlinear neural networks: principles, mechanisms, and architectures”, Neural Networks, vol. 1, 17–61, 1988.

    Article  Google Scholar 

  33. Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949.

    Google Scholar 

  34. Higgins, J.R., “Five short stories about the cardinal series”, Bull. Am. Math. Soc., vol. 12, 45–89, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hopfield, J. J., “Neural networks and physical systems with emergent collective computational abilities”, Proc. Natl. Acad. Sci., USA, vol. 79, pp. 2554–2558, 1982.

    Article  MathSciNet  Google Scholar 

  36. Hopfield, J. J., “Neurons with graded response have collective computational properties like those of two-state neurons”, Proc. Natl. Acad. Sci., USA, vol. 81, pp. 3088–3092, 1984.

    Article  Google Scholar 

  37. Hopfield, J. J., and Tank, D. W. ‘Neural’ computation of decisions in optimization problems“, Bio. Cybern., vol. 52, pp. 141–152, 1985.

    MathSciNet  MATH  Google Scholar 

  38. Hornik, K., Stinchcombe, M., and White, H., “Multilayer feedforward networks are universal approximators”, Neural Networks,2, 359–366, 1989.

    Article  Google Scholar 

  39. Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J., “Neural networks for control systems—a survey”, Automatica, vol. 28, 1083–1112, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ioannou, P., and Datta, A., “Robust adaptive control: a unified approach”, Proc. IEEE,79, 12, pp. 1736–1768, Dec. 1991.

    Article  Google Scholar 

  41. Ioannou, P., and Kokotovic, P.V., “Instability analysis and the improvement of robustness of adaptive control”, Automatica, 20,5, pp.583–594, Sept. 1984.

    Article  MathSciNet  MATH  Google Scholar 

  42. Isidori, A., Nonlinear Control Systems, Springer-Verlag, Berlin, 1989.

    MATH  Google Scholar 

  43. Jerri, A.J., “The Shannon sampling theorem—its various extensions and applications: a tutorial review”, Proc. IEEE, vol. 65, 1565–1596, 1977.

    Article  MATH  Google Scholar 

  44. Jordan, M.I., “Learning inverse mappings using forward models”, Proc. 6th Yale Workshop on Adaptive and Learning Systems, 146–151, Aug. 1990.

    Google Scholar 

  45. Jordan, M. I., and Rumelhart, D.E., “Forward models: supervised learning with a distal teacher”, Cognitive Science, vol. 16, 307–354, 1992.

    Article  Google Scholar 

  46. Kalman, R. E., “Design of a self-optimizing control system”, Trans. ASME,vol. 80, 468–478, 1958.

    Google Scholar 

  47. Kanellakopoulos, I., Kokotovic, P. V., Morse, A.S., “Systematic design of adaptive controllers for feedback linearizable systems”, IEEE Trans. Autom. Cont., vol. 36, 1241–1253, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  48. Kohonen, T., Self-Organization and Associative Memory,Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  49. Kosko, B., Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs, NJ, 1992.

    MATH  Google Scholar 

  50. Kudva, P. and Narendra, K. S., “Synthesis of an adaptive observer using Lyapunov’s direct method”, Intl. J. Cont., vol. 18, 1201–1210, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  51. Margolis, M. and Leondes, C. T., “On the theory of adaptive control systems: Method of teaching models”, Proc. 1st IFAC Congress, vol. 2, 1961.

    Google Scholar 

  52. Marks, R., J., Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  53. McCulloch, W.S. and Pitts, W., “A logical calculus of ideas immanent in nervous activity”, Bull. Math. Biophys., vol. 5, pp.1115–1133, 1943.

    Article  Google Scholar 

  54. Mendel, J.M., and McLaren, R.W., “Reinforcement-learning control and pattern recognition systems”, in Computer and Information Sciences, Julius Tou and Richard Wilcox, ed., Spartan Books, Washington, pp. 318–343, 1964.

    Google Scholar 

  55. Micchelli, C., “Interpolation of scattered data: distance matrices and conditionally positive definite functions”, Const. Approx., 2, pp. 11–22, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  56. Miller, W. T., An, E., and Glanz, F., “The design of CMAC neural networks for control”, Proc. 6th Yale Workshop on Adaptive and Learning Systems, 218–224, Yale, New Haven, CT, 1990.

    Google Scholar 

  57. Miller, W. T., Glanz, F. H., and Kraft, L.G., “Application of a general learning algorithm to the control of robotic manipulators”, Intl. Jour. Rob. Res., 6, 84–98, 1987.

    Article  Google Scholar 

  58. T.W. Miller, R.S. Sutton, and P.J. Werbos, eds., Neural Networks for Control, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  59. Minsky, M., and Papert, S., Perceptrons, MIT Press, Cambridge, MA, 1969.

    MATH  Google Scholar 

  60. Morse, A.S., “Global stablity of parameter adaptive systems”, IEEE Trans. Autom. Cont., vol. 25, 433–439, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  61. Nam, K. and Arapostathis, “A model reference adaptive control scheme for pure-feedback nonlinear systems”, IEEE Trans. Autom. Control, 33, 9, 803–811, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  62. Narendra, K. S., and Annaswamy, A., Stable Adaptive Systems, Prentice Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  63. Narendra, K.S., and Kudva, P., “Stable adaptive schemes for system identification and control—Parts I and IP”, IEEE Trans. Sys., Man, and Cyber., vol. SMC-4, 542–560, 1974.

    Article  MathSciNet  Google Scholar 

  64. Narendra, K.S., Lin, Y.H., and Valavani, L.S., “Stable adaptive controller design—Part II: proof of stability”,IEEE Trans. Autom. Cont., vol. 25, 440–448, 1980.

    Article  MATH  Google Scholar 

  65. Narendra, K. S., and Parthasarathy, K., “Identification and control of dynamical systems using neural networks”, IEEE Trans. on Neural Networks, vol. 1, 4–27, 1990.

    Article  Google Scholar 

  66. Narendra, K. S., and Parthasarathy, K., “Gradient methods for the optimization of dynamical systems containing neural networks”, IEEE Trans. on Neural Networks, vol. 2, 252–262, 1991.

    Article  Google Scholar 

  67. Narendra, K. S., and Parthasarathy, K., “Identification and control of dynamical systems using neural networks—Part IP”, Proc. 6th Yale Workshop on Adaptive and Learning Systems, 164–172, Aug. 1990.

    Google Scholar 

  68. Narendra, K.S., and Valavani, L.S., “Stable adaptive controller design—Direct control”, IEEE Trans. Autom. Cont., vol. 23, 570–583, 1978.

    Article  MATH  Google Scholar 

  69. Parks, P. C., “Lyapunov redesign of model reference adaptive control systems”, IEEE Trans. Autom. Control., vol. 11, 362–367, 1966.

    Article  Google Scholar 

  70. Petersen, D. P., and Middleton, D., “Sampling and reconstruction of wave number limited functions in n-dimensional Euclidean spaces”, Information and Control, 5, 279–323, 1962.

    Article  MathSciNet  Google Scholar 

  71. Peterson, B. B., and Narendra, K. S., “Bounded Error Adaptive Control”, IEEE Trans. Autom. Cont.,27, 6, 1161–1168, 1982.

    Article  MATH  Google Scholar 

  72. Poggio, T., and Girosi, F., “Networks for approximation and learning”, Proc. IEEE,78, 9, 1481–1497, 1990.

    Article  Google Scholar 

  73. Poggio, T., and Girosi, F., “Extensions of a theory of networks for approximation and learning: dimensionality reduction and clustering”, Artificial Intelligence Lab. Memo, No. 1167, MIT, Cambridge, MA, April 1990.

    Google Scholar 

  74. Polycarpou, M., and loannou, P., “Identification and control of nonlinear systems using neural network models: design and stability analysis”, TR No. 91–09–01, USC Dept. EE-Systems, Sept. 1991.

    Google Scholar 

  75. Powell, M. J. D., “The theory of radial basis function approximation in 1990”, DA MTP Report, No. NA 11, Univ. of Cambridge, Cambridge, England, Dec. 1990.

    Google Scholar 

  76. Psaltis, D., Sideris, A., and Yamamura, A., “Neural Controllers”, Proc. 1st IEEE Conf. on Neural Networks, San Diego, CA, vol. IV, 551–557, June 1987

    Google Scholar 

  77. Rohrs, C., Valavani, L., Athans, M. and Stein, G., “Robustness of adaptive control algorithms in the presence of unmodelled dynamics”, Proc. 21st Conf. Dec. Control, 3–11, 1982.

    Google Scholar 

  78. Rosenblatt, F., Principles of Neurodynamics, Washington, Spartan Books, 1962.

    MATH  Google Scholar 

  79. Rumelhart, D. E., and McClelland, J. L., Parallel Distributed Processing, Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  80. Sadegh, N., “Nonlinear identification and control via neural networks”, ASME Winter Annual Meeting, pp. 45–56, 1991.

    Google Scholar 

  81. Sanner, R.M., “Stable adaptive control and recursive identification of nonlinear systems using radial gaussian networks”, Ph. D. Thesis, MIT Dept. of Aeronautics and Astronautics, May, 1993.

    Google Scholar 

  82. Sanner, R. M., and Slotine, J.-J. E., “Gaussian networks for direct adaptive control”, Proc. 1991 Automatic Control Conference, vol. 3, 2153–2159, Boston MA, June 1991.

    Google Scholar 

  83. Sanner, R. M., and Slotine, J.-J. E., “Gaussian networks for direct adaptive control”, IEEE Trans. Neural Networks, 3(6), pp 837–863, November 1992.

    Article  Google Scholar 

  84. Sanner, R. M., and Slotine, J.-J. E., “Stable adaptive control and recursive identification using radial Gaussian networks”, IEEE Conf. Decision and Control,Brighton, England, December 1991.

    Google Scholar 

  85. Sauner, R. M., and Slotine, J.-J. E., “Enhanced algorithms for adaptive control using radial gaussian networks”, Proc. 1992 Automatic Control Conference, Chicago,IL,.June 1992.

    Google Scholar 

  86. Sanner, R. M., and Slotine, J.-J. E., “Stable recursive identification using radial basis function networks”, Proc. 1992 Automatic Control Conference, Chicago,IL, June 1992.

    Google Scholar 

  87. Sanner, R. M., and Slotine, J.-J. E., “Approximation error bounds for scattered-center Gaussian networks”, Proc. 1992 Conf. Dec. and Cont., Tuscon, AZ, Dec 1992.

    Google Scholar 

  88. Sastry, S., and Bodson, M., Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  89. Sastry, S., and Isidori, A. “Adaptive control of linearizable systems”, IEEE Trans. Autom. Control, 34, 1123–1131, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  90. Schoenberg, I.J., “Metric spaces and positive definite functions”, Trans. Am. Math. Soc., 44, pp. 522–536, 1938.

    Article  MathSciNet  Google Scholar 

  91. Slotine, J.-J. E., “Sliding controller design for nonlinear systems”, Intl. Journal of Control, 40, 421, 1984.

    Article  MATH  Google Scholar 

  92. Slotine, J.-J. E. and Coetsee, J.A., “Adaptive sliding controller synthesis for nonlinear systems”, Intl. Journal of Control, 1986.

    Google Scholar 

  93. Slotine, J.-J. E. and Li, W., “On the adaptive control of robotic manipulators”, Intl. Journal of Rob. Res., 6, 3, 1987.

    Google Scholar 

  94. Slotine, J.-J. E. and Li, W., Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, 1991.

    MATH  Google Scholar 

  95. Sontag, E. D., “Feedback stabilization using two-hidden-layer networks”, IEEE Trans. Neural Networks, vol. 3, 981–990, 1992.

    Article  Google Scholar 

  96. Strang, G., and Fix, G., “A Fourier analysis of the finite element variational method”, in Constructive Aspects of Functional Analysis, G. Geymonet, ed., 793–840, 1973.

    Google Scholar 

  97. Tsypkin, Ya. Z., Adaptation and Learning in Automatic Systems, Academic Press, New York, 1971.

    Google Scholar 

  98. Tzirkel-Hancock, E., and Fallside, F., “Stable control of nonlinear systems using neural networks”, Intl. J. Robust and Nonlinear Control,2, 63–86, May 1992.

    Article  MATH  Google Scholar 

  99. Utkin, V. I., “Variable structure systems with sliding mode: a survey”, IEEE Trans. Auto. Contr., 22, 212, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  100. Whittaker, E.T., “On the functions which are represented by the expansion of the interpolation theory”, Proc. Royal Soc. Edinburgh, vol. 35, 181–194, 1915.

    Google Scholar 

  101. Widrow, B., and Hoff, M. E., “Adaptive switching circuits”, Inst. Rad. Eng., WestCon Convention Record,IV, 96–104, 1960.

    Google Scholar 

  102. Widrow, B. and Smith, F. W, “Pattern-recognizing control systems”, in Computer and Information Sciences, Julius Tou and Richard Wilcox, ed., Spartan Books, Washington, pp. 318–343, 1964.

    Google Scholar 

  103. Winston, P. H., Artificial Intelligence, 3rd. ed., Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  104. Zaanen, A. C., Continuity, Integration, and Fourier Theory,Springer-Verlag, Berlin, 1989.

    Google Scholar 

  105. Zemanian, A. H., Distribution Theory and Transform Analysis,McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slotine, JJ.E., Sanner, R.M. (1993). Neural Networks for Adaptive Control and Recursive Identification: A Theoretical Framework. In: Trentelman, H.L., Willems, J.C. (eds) Essays on Control. Progress in Systems and Control Theory, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0313-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0313-1_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6702-7

  • Online ISBN: 978-1-4612-0313-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics