Structure-Activity Relationships of Agonist and Antagonist Ligands

  • Scott L. Harbeson
  • Paolo Rovero
Part of the The Receptors book series (REC)


The biological activity of substance P (SP) C-terminal partial sequences has been previously reported (Bury and Mashford, 1976). The minimum sequence that maintains significant biological activity in the isolated guinea pig ileum is the pentapeptide, SP7–11. This concept has been recently confirmed by binding experiments to cloned rat NK1, NK2, and NK3 receptors heterologously expressed in Chinese hamster ovary cells (Cascieri et al., 1992). C-terminal partial sequences of SP, neurokinin A (NKA), and neurokinin B (NKB) have also been tested on monoreceptorial prepa-rations selective for each of the three tachykinin receptor types (Dion et al., 1987b). The results obtained with SP and its fragments on the isolated dog carotid artery clearly indicate that, at the NK1 receptor, SP is more potent than its fragments, although these fragments maintain full agonist activity. Since some of the C-terminal fragments of NKA are more active than NKA itself at the NK2 receptor (see Section 2.1.1.), the activity of the fragments has been used as a second criterion for the classification of the tachykinin receptors, in addition to the rank order of potency of natural ligands (Regoli et al., 1987). Thus, the three tachykinin receptor types are defined as follows:
  1. NK1

    SP > NKA and > NKB.

    The tachykinins are more active than their respective fragments.

  2. NK2

    NKA > NKB > SP.

    Some NKA fragments are more selective than their precursor.

  3. NK3

    NKB > NKA > SP.

    Fragments of NKB are less active than their precursor.



Tachykinin Receptor ESCOM Science Publisher Hamster Urinary Bladder Reduce Peptide Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allmendinger, T., Felder, E.,and Hungerbuhler, E. (1990) Fluoroolefin dipeptide isosteres-II. Enantioselective synthesis of both antipodes of the Phe-Gly dipeptide mimic. Tet. Lett. 31 7301–7304.Google Scholar
  2. Buck, S. and Shatzer, S.A. (1988) Agonist and antagonist binding to tachykinin peptide NK-2 receptors. Life Sci. 42, 2701–2708.PubMedCrossRefGoogle Scholar
  3. Buck, S.H., Harbeson, S.L., Hassman III, C.F., Shatzer, S.A., Rouissi, N., Nantel, F., and van Giersbergen, P. L.M. (1990) [Leu9yr(CH2NH)Leu10] -Neurokinin A-10 (MDL 28,564) distinguishes tissue tachykinin peptide NK-2 receptors. Life Sci. 47 PL37–PL41.Google Scholar
  4. Bury, R. W. and Mashford, M. L. (1976) Biological activity of C-terminal partial sequences of substance P. J. Med. Chem. 19 854–856.PubMedCrossRefGoogle Scholar
  5. Cascieri, M.A., Chicchi, G.G., Freidinger, R.M., Colton, C.D., Perlow, D.S., Williams, B. Curtis, N.R., McKnight, A.T., Maguire, J.J., Veber, D.F., and Liang, T. (1986) Conformationally constrained tachykinin analogues which are selective ligands for the eledoisin receptor. Mol. Pharmacol. 29 34–38.PubMedGoogle Scholar
  6. Cascieri, M. A., Goldenberg, M. M., and Liang, T. (1981) Biological activity of substance P methyl ester. Mol. Pharmacol. 20 457–459.PubMedGoogle Scholar
  7. Cascieri, M. A., Huang, R. R. C., Fong, T. M., Cheung, A. H., Sadowski, S., Ber, E., and Strader, C. (1992) Determination of the amino acid residues in substance P conferring selectivity and specificity for the rat neurokinin receptors. Mol. Pharmacol. 41 1096–1099.PubMedGoogle Scholar
  8. Chassaing, G., Lavielle, S., Loeuillet, D., Robilliard, P., Carruette, A., Garret, C., Beaujouan, J. C., Saffroy, M., Petitet, F., Torrens, Y., and Glowinski, J. (1991) Selective agonists of NK_2 binding sites highly active on rat portal vein (NK3 bioassay). Neuropeptides 19 91–95.PubMedCrossRefGoogle Scholar
  9. Clementi, S., Cruciani, G., Riganelli, D., Rovero, P. Pestellini, V., Maggi, C. A., and Baroni, M. (1990) Chemometric approach to a QSAR study of peptides behaving as NK_2 receptor antagonists. Tetrahedron Computer Method 3 379–387.CrossRefGoogle Scholar
  10. Clementi, S., Cruciani, G., Rovero, P., Pestellini, V., and Baroni, M. (1991) Chemometric investigation in peptide QSAR, in QSAR: Rational Approach to the Design of Bioactive Compounds (Silipo, C. and Vittoria, A., eds.), Elsevier, Amsterdam, pp. 353–356.Google Scholar
  11. Convert, O., Duplaa, H., Lavielle, S., and Chassaing, G. (1991) Influence of the replacement of amino acid by its D-enatiomer in the sequence of substance P. 2. Conformational analysis by NMR and energy calculations. Neuropeptides 19 259–270.PubMedCrossRefGoogle Scholar
  12. Couture, R., Fournier, A., Magnan, J., St. Pierre, S., and Regoli, D. (1979) Structureactivity studies of substance P. Can. J. Physiol. Pharmacol. 57 1427–1436.Google Scholar
  13. Cox, M.T., Gormley, J.J., Hayward, C.F., and Petter, N.N. (1980) J. Chem. Soc. Chem. Commun. 800.Google Scholar
  14. Dion, S., D’Orléans-Juste, P., Drapeau, G., Rhaleb, N.-E., Rouissi, N., Tousignant, C., and Regoli, D. (1987a) Characterization of neurokinin receptors in various isolated organs by the use of selective agonists. Life Sci. 41 2269–2278.CrossRefGoogle Scholar
  15. Dion, S., D’ Orléans-Juste, P., Rhaleb, N. E., Drapeau, G., Rovero, P., and Regoli, D. (1987b) Neurokinin fragments and analogues as selective activators of receptors, in Substance P and Neurokinins (Henry, J., Couture, R., Cuello, A. C., Pelletier, G., Quirion, R., and Regoli, D., eds.), Springer-Verlag, New York, pp. 129–131.CrossRefGoogle Scholar
  16. Dion, S., Rouissi, N., Nantel, F., Jukic, D., Rhaleb, N.-E., Tousignant, C., Telemaque, S., Drapeau, G., Regoli, D., Naline, E., Advenier, C., Rovero, P., and Maggi, C. A. (1990) Structure-activity study of neurokinins: antagonists for the neurokinin-2 receptor. Pharmacology 41 184–194.PubMedCrossRefGoogle Scholar
  17. Drapeau, G., D’Orléans-Juste, P., Dion, S., Rhaleb, N.-E., Rouissi, N.-E., and Regoli, D. (1987a) Selective agonists for substance P and neurokinin receptors. Neuropep­tides 10 43–54.CrossRefGoogle Scholar
  18. Drapeau, G., Rovero, P., D’Orléans-Juste, P., Dion, S., Rhaleb, N. E., and Regoli, D. (1987b) Mammalian neurokinins: structure-activity study of the C-terminal methionine amide, in Substance P and Neurokinins (Henry, J., Couture, R., Cuello, A. C., Pelletier, G., Quirion, R. and Regoli, D., eds.), Springer-Verlag, New York, pp. 132–134.CrossRefGoogle Scholar
  19. Drapeau, G., Rouissi, N., Nantel, F., Rhaleb, N.-E., Tousignant C., and Regoli, D. (1990) Antagonists for the neurokinin NK-3 receptor evaluated in selective recep­tor systems. Regul. Pept. 31 125–135.PubMedCrossRefGoogle Scholar
  20. Duplaa, H., Chassaing, G., Lavielle, S., Beaujouan, J. C., Torrens, Y., Saffroy, M., Glowinski, J., D’Orléans-Juste, P., Regoli, D., Carruette, A., and Garret, D. (1991) Influence of the replacement of amino acid by its D-enantiomer in the sequence of substance P. 1. Binding and pharmacological data. Neuropep­tides 19 251–257.CrossRefGoogle Scholar
  21. Ewenson, A., Laufer, R., Chorev, M., Selinger, Z., and Gilon, C. J. (1986) Ketomethylene pseudopeptide analogues of substance P: synthesis and biological activity. J. Med. Chem. 29 1281.CrossRefGoogle Scholar
  22. Folkers, K., Hakanson, R., Horig, J., Jie-Cheng, X., and Leander, S. (1984) Biological evaluation of substance P antagonists. Br. J. Pharmacol. 83 449–456.PubMedCrossRefGoogle Scholar
  23. Folkers, K., Feng, D.-M., Asano, N., Hakanson, R., Weisenfeld-Hallin, Z., and Leander, S. (1990) Spantide II, an effective tachykinin antagonist having high potency and negligible neurotoxicity. Proc. Natl. Acad. Sci. USA 87 4833–4835.PubMedCrossRefGoogle Scholar
  24. Gilon, C., Halle, D., Chorev, M., Selinger, Z., and Byk, G. (1991a) Backbone cycli­zation: a new method for conferring conformational constraint on peptides. Biopolymers 31 745–750.CrossRefGoogle Scholar
  25. Gilon, C., Halle, D., Chorev, M., Selinger, Z., Goldshmith, R., and Byk, G. (1991b) Backbone-to-end cyclic tachykinins: A new approach to conformationally re­stricted peptides, in Peptides 1990 (Giralt. E. and Andreu, D., eds.), ESCOM Science Publishers B.V., Leiden, pp. 404–406.Google Scholar
  26. Guiliani, S., Baranti, G., Turini, D., Quartara, L., Rovero, P., Giachetti, A., and Maggi, C. (1991) NK2 tachykinin receptors and contraction of circular muscle of the human colon: characterization of the NKZ receptor subtype. Eur. J. Pharmacol. 203 365–370.CrossRefGoogle Scholar
  27. Hagan, R. M., Ireland, S. J., Jordan, C. C., Bailey, F., Stephens-Smith, M., Deal, M., and Ward, P. (1989) Novel, potent and selective agonists at NK-1 and NK-2 recep­tors. Br. J. Pharmacol. 98 717P.CrossRefGoogle Scholar
  28. Hagan, R. M., Ireland, S. J., Jordan, C. C., Beresford, I. J. M., Deal, M. J., and Ward, P. (1991) Receptor selective peptidase-resistant agonists at neruokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function. Neuropeptides 19 127.PubMedCrossRefGoogle Scholar
  29. Hagiwara, D., Miyake, H., Morimoto, H., Murai, M., Fujii, T., and Matsuo, M. J. (1991) The discovery of a tripeptide substance P antagonist and its structure-activity relationships. Pharmacobio.-Dyn. 14 s-104.Google Scholar
  30. Harbeson, S.L., Buck, S.H., Hassman III, C.F., and Shatzer, S.A. (1989) Synthesis and Biological Activity of [yt(CH2NH)] Analogs of Neurokinin A¢10, in Peptides: Chemistry, Structure and Biology: Proceedings of the Eleventh American Peptide Symposium (Rivier, J. E. and Marshall, G. R., eds.), ESCOM Science Publishers B. V., Leiden, pp. 180–181.Google Scholar
  31. Harbeson, S. L., Malikayil, J. A., and Buck, S. H. (1991) Cyclic yt(CH2NR) Peptide Neurokinin A Antagonists: Structure-Activity and Conformational Studies, in Peptides: Chemistry and Biology: Proceedings of the 12 1 “ American Peptide Sym­posium (Smith, J. A. and Rivier, J. E., eds.), ESCOM Science Publishers B. V., Leiden, pp. 124–125.Google Scholar
  32. Harbeson, S.L., Shatzer, S. A., Le, T.-B., and Buck, S. (1992) A new class of antago­nists at the neurokinin A NK-2 receptor: yt(CH2NR) reduced peptide bond ana­logues of neurokinin A¢10. J. Med. Chem. 35 3949–3955.PubMedCrossRefGoogle Scholar
  33. Hashimoto, T., Kurosawa, K., and Uchida, Y. (1987a) Syntheses and biological ac­tivities of neurokinin A analogs substituted with glycine. Bull. Chem. Soc. Jpn. 60 3071–3073.CrossRefGoogle Scholar
  34. Hashimoto, T., Uchida, Y., Naminohira, S., and Sakai, T. (1987b) Tachykinin antago­nist I: specific, competitive and tissue-selective neurokinin B antagonists on con­tractile activity in smooth muscles. Japan J. Pharmacol. 45 570–573.CrossRefGoogle Scholar
  35. Holzemann, G., Jonczyk, A., Eiermann, V., Pachler, K. G. R., Barnickel, G., and Regoli, D. (1991) Conformation-based design of two cyclic physalaemin ana­logues. Biopolymers 31 691–697.PubMedCrossRefGoogle Scholar
  36. Jacoby, H. I., Lopez, I., Wright, D., and Vaught, J. (1986) Differentiation of multiple neurokinin recpetors in the guinea pig ileum. Life Sci. 39 1995–2003.PubMedCrossRefGoogle Scholar
  37. Jukic, D., Mayer, M., Schmitt, P., Drapeau, G., Regoli, D. and Michelot, R. (1991) Synthesis and biological activities of neurokinin pseudopeptide analogues con­taining a reduced peptide bond. Eur. J. Med. Chem. 26 921–928.CrossRefGoogle Scholar
  38. Karagiannis, K., Manolopoulos, A., Stavropoulos, G., Polulos, C., Jordan, C. C., and Hagan, R. M. (1991) Synthesis of a potent agonist of substance P by modifying the methionyl and glutamyl residies of the C-terminal hexapeptide of substance P.1nt. 1. Peptide Protein Res. 38 350–356.CrossRefGoogle Scholar
  39. Laufer, R., Gilon, C., Chorev, M., and Selinger, Z. (1986) [pGlu6, Pro9]-substance P(6–11), a selective agonist for the substance P P-receptor subtype. J. Med. Chem. 29 1284–1288.PubMedCrossRefGoogle Scholar
  40. Lavielle, S., Chassaing, G., Besseyre, J., Julien, S., Loeuillet, D. Marquet, A., Beaujouan, J.C., Bergstrom, L., Torrens, Y., and Glowinski, J. (1988a) Tachykinin receptors, in Peptides,Structure and Function. Proceedings of the 10th American Peptide Symposium (Marshall, G. R., ed.), ESCOM Science Publishers B. V., Leiden, pp. 482–483.CrossRefGoogle Scholar
  41. Lavielle, S., Chassaing, G., Ploux, O., Loeuillet, D., Besseyre, J., Julien, S., Marquet, A., Convert, O., Beaujouan, J.-C., Torrens, Y., Bergstrom, L., Saffroy, M., and Glowinski, J. (1988b) Analysis of tachykinin binding site interactions using con­strained analogues of tachykinins. Biochem. Pharmacol. 37 41–49.CrossRefGoogle Scholar
  42. Lee, C. M., Campbell, N. J., Williams B. J., and Iversen L. L. (1986) Multiple tachykinin binding sites in peripheral tissues and in brain. Eur. J. Pharmacol. 130 209–217.PubMedCrossRefGoogle Scholar
  43. Logan, M. E., Goswami, R., Tomczuk, B. E., and Venepalli, B. R. (1991) Recent advances in neurokinin receptor antagonists, in Annu. Rep. in Med. Chem. 26 (Bristol, J. A., ed.), Academic, New York, pp. 43–51.Google Scholar
  44. Maggi, C. A., Patacchini, R., Giuliani, S., Rovero, P., Dion, S., Regoli, D., Giachetti, A., and Meli, A. (1990) Competitive antagonists discriminate between NK-2 tachykinin receptor subtypes. Br. J. Pharmacol. 100 588–592.CrossRefGoogle Scholar
  45. Maggi, C. A., Patacchini, R., Quartara, L., Rovero, P., and Santicioli, P. (1991a) Tachykinin receptors in the guinea-pig isolated bronchi. Eur. J. Pharmacol. 197 167–174.CrossRefGoogle Scholar
  46. Maggi, C. A., Giuliani, S., Ballati, L., Lecci, A., Manzini, S., Patacchini, R., Renzetti, A. R., Rovero, P., Quartara, L., and Giachetti, A. (1991b) In vivo evidence for tachykininergic transmission using a new NK-2 receptor-selective antagonist, MEN 10,376. J. Pharmacol. Exp. Therap. 257 1172–1178.Google Scholar
  47. Maggi, C. A., Patacchini, R., Astolfi, M., Rovero, P., Giachetti, A., and Van Giersbergen, P. L. M. (1992) Affinity of R 396, an NK-2 tachykinin receptor antagonist, for NK-2 receptors in preparations from different species. Neuropep­tides 22 93–98.CrossRefGoogle Scholar
  48. Maggi, C. A., Patacchini, R., Rovero, P., and Giachetti, A. (1993) Tachykinin receptors and tachykinin receptor antagonists. J. Autonom. Pharmacol. 13 23–93.CrossRefGoogle Scholar
  49. Malikayil, J. A., and Harbeson, S. L. (1992) Conformation of a neurokinin antagonist in solution as studied by NMR and restrained molecular dynamics. Intl. J. Pept. Prot. Res. 39 497–505.CrossRefGoogle Scholar
  50. McElroy, A. B., Clegg, S. P., Deal, M. J., Ewan, G. B., Hagan, R. M., Ireland, S. J., Jordan, C. C., Porter, B., Ross, B. C., Ward, P., and Whittington, A. R. (1992) Highly potent and selective heptapeptide antagonists for the neurokinin NK-2 receptor. J. Med. Chem. 35 2582–2591.PubMedCrossRefGoogle Scholar
  51. McKnight, A. T., Maguire, J. J., and Varney, M. A. (1987) Characterization of receptors for tachykinins in guinea-pig islolated trachea. Br. J. Pharmacol. 91 360P.Google Scholar
  52. McKnight, A. T., Maguire, J. J., Williams B. J., Foster, A. C., Tridgett, R., and Iversen, L. L. (1988) Pharmacological specificity of synthetic peptides as antagonists at tachykinin receptors. Regul. Pept. 22 127.CrossRefGoogle Scholar
  53. McKnight, A. T., Maguire, J. J., Elliott, N. J., Fletcher, A. E., Foster, A. C., Tridgett, R., Williams, B. J., Longmore, J., and Iversen, L. L. (1991) Pharmacological specificity of novel, synthetic, cyclic peptides as antagonists at tachykinin recep­tors. Br. J. Pharmacol. 104 355–360.PubMedCrossRefGoogle Scholar
  54. Michelot, R., Mayer, M., Magneney, S., Pham Van Chuong, P., Schmitt, P., and Potier, P. (1988) Activity of the C-terminal part of substance P on guinea pig ileum and trachea preparations I. N-Acylated pentapeptides substance P(7–10). Eur. J. Med. Chem. 23 243–247.CrossRefGoogle Scholar
  55. Osakada, F., Kubo, K., Goto, K., Kanazawa, I., and Munekata, E. (1986) The contrac­tile activities of neurokinin A, B and related peptides on smooth muscles. Eur. J. Pharmacol. 120 201–208.PubMedCrossRefGoogle Scholar
  56. Piercey, M. F., Dorbry-Schreur, P. H. K., Masiques, N., and Schroeder, L. A. (1985) Stereospecificity of substance P1 and substance P2 substance P receptors. Life Sci. 36 777–780.PubMedCrossRefGoogle Scholar
  57. Poulos, C., Brown, J. R., and Jordan, C. C. (1986) Synthesis and biological activity of substance P C-terminal hexapeptide analogues: structure-activity studies. J. Med. Chem. 29 1281.PubMedCrossRefGoogle Scholar
  58. Poulos, C., Stavropoulos, G., Brown, J. R., and Jordan C. C. (1987) Structure-activity studies on the C-terminal hexapeptide of substance P with modifications at the glutaminyl and methioninyl residues. J. Med. Chem. 30 1512–1515.PubMedCrossRefGoogle Scholar
  59. Qian, J.-M., Coy, D.H., Jiang, N.-Y., Gardner, J. D., and Jensen, R. T. (1989) Reduced peptide bond pseudopeptide analogues of substance P. A new class of substance P receptor antagonists with enhanced specificity. J. Biol. Chem. 264 16,667­16,671.Google Scholar
  60. Regoli, D., Mizrahi, J., D’Orléans-Juste, P., Dion, S., Drapeau, G., and Escher, E. (1985) Substance P antagonists showing some selectivity for different receptor types. Eur. J. Pharmacol. 109,121–125.PubMedCrossRefGoogle Scholar
  61. Regoli, D., Drapeau, G., Dion, S., and D’Orléans-Juste, P. (1987) Pharmacological receptors for substance P and neurokinins. Life Sci. 40 109–117.PubMedCrossRefGoogle Scholar
  62. Regoli, D., Drapeau, G., Dion, S., and Couture, R. (1988) New selective agonists for neurokinin receptors: pharmacological tools for receptor characterization. Trends Pharmacol. Sci. 9 290–295.PubMedCrossRefGoogle Scholar
  63. Regoli, D., Drapeau, G., Dion, S., and D’Orléans-Juste, P. (1989) Receptors for substance P and related neurokinins. Pharmacology 38 1–15.PubMedCrossRefGoogle Scholar
  64. Rovero, P., Pestellini, V., Patacchini, R., Santicioli, P., Maggi, C. A., and Meli, A. (1987) Synthesis and biological activity of N-methylated analogues of neurokinin A. Neuropeptides 10 355–359.PubMedCrossRefGoogle Scholar
  65. Rovero, P., Pestellini, V., Patacchini, R., Giuliani, S., Santicioli, P., Maggi, C. A., Meli, A., and Giachetti, A. (1989a) A potent and selective agonist for NK-2 tachykinin receptor. Peptides 10 593–595.CrossRefGoogle Scholar
  66. Rovero, P., Pestellini, V., Patacchini, R., Santicioli, Maggi, C.A., and Meli, A. (1989b) Conformationally constrained tachykinins: N-methylated analogues of neurokinin A. Biopolymers 28 65–67.Google Scholar
  67. Rovero, P., Pestellini, V., Rhaleb, N.-E., Dion, S., Rouissi, N., Tousignant, C., Telemaque, S., Drapeau, G., and Regoli, D. (1989c) Structure-activity studies of neurokinin A. Neuropeptides 13 263–270.CrossRefGoogle Scholar
  68. Rovero, P., Pestellini, V., Maggi, C. A., Patacchini, R., Regoli, D., and Giachetti, A. (1990a) A highly selective NK-2 tachykinin receptor antagonist containing D­tryptophan. Eur. J. Pharmacol. 175 113–115.CrossRefGoogle Scholar
  69. Rovero, P., Pestellini, V., Patacchini, R., Giuliani, S., Maggi, C. A., Meli, A., and Giachetti, A. (1990b) Synthesis and biological activity of NK-2 selective tachykinin antagonists containing D-tryptophan. Peptides 11 619,620.Google Scholar
  70. Rovero, P., Astolfi, M., Renzetti, A. R., Patacchini, R., Giachetti, A., and Maggi, C. A. (1991) Role of D-tryptophan for affinity of MEN 10207 tachykinin antagonist at NK-2 receptors. Peptides 12 1015–1018.PubMedCrossRefGoogle Scholar
  71. Rovero, P. Astolfi, M., Manzini, S., Jucik, D., Rouissi, N., Maggi, C.A., and Regoli, D. (1992a) Structure-activity study of R 396, an NK-2 tachykinin antagonist selec­tive for the NK-2B receptor subtype. Neuropeptides 23 143–145.CrossRefGoogle Scholar
  72. Rovero, P., Quartara, L., Astolfi, M., Patacchini, R., Giachetti, A., and Maggi, C. A. (1992b) Structure-activity study of the C-terminal residue of MEN 10207 tachy­kinin antagonist. Peptides 13 207–208.CrossRefGoogle Scholar
  73. Saviano, G., Temussi, P. A., Motta, A., Maggi, C. A., and Rovero, P. (1991) Confor­mation-activity relationship of tachykinin neurokinin A (4–10) and of some [Xaag] analogues. Biochemistry 30, 10,175–181.Google Scholar
  74. Smith, P.W., McElroy, A.B. Pritchard, J.M., Deal, M.J., Ewan, G.B., Hagan, R. M., Ireland, S.J., Ball, D., Beresford, I., Sheldrik, R., Jordan, C.C., and Ward, P. (1993) Low molecular weight neurokinin NK-2 antagonists. Biorg. Med. Chem. Lett. 3 931–936.CrossRefGoogle Scholar
  75. Tschirhart, E., Schmitt, P., Bertrand, C., Mayer, M., Magneney, S., Landry, Y., and Michelot, R. (1989) Contractile activity of the N-acylated C-terminal part of substance P(7–11) in guinea pig trachea. Naunyn Schmiedeberg’s Arch. Pharmacol. 340 107–110.CrossRefGoogle Scholar
  76. Ward, P., Ewan, G.B. Jordan, C.C., Ireland, S.J., Hagan, R.M., and Brown, J.R. (1990) Potent and highly selective neurokinin antagonists. J. Med. Chem. 33 1848–1851.PubMedCrossRefGoogle Scholar
  77. Watson, S.P., Sandberg, B.E.B., Hanley, M.R., and Iversen, L.L. (1983) Tissue selectivity of substance P alkyl esters: suggesting multiple receptors. Eur. J. Pharmacol. 87 77–84.PubMedCrossRefGoogle Scholar
  78. Williams, B. J., Curtis, N. R., McKnight, A. T., Maguire, J., Foster, A., and Tridgett, R. (1988) Development of NK2 selective antagonists. Regul. Pept. 22 189.CrossRefGoogle Scholar
  79. Wormser, U., Laufer, R., Hart, Y., Chorev, M., Gilon, C., and Selinger, Z. (1986) Highly selective agonists for substance P receptor subtypes. EMBO J. 5 2805­-2808.Google Scholar
  80. Zacharia, S., Rossowski, W. J., Jiang, N.-Y., Hrbas, P., Ertan, A., and Coy, D. H. (1991) New reduced peptide bond substance P agonist and antagonists: effects on smooth muscle contraction. Eur. J. Pharmacol. 203 353–357.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Scott L. Harbeson
  • Paolo Rovero

There are no affiliations available

Personalised recommendations