Signal Transduction Mechanisms of Tachykinin Effects on Ion Channels

  • Yasuko Nakajima
  • Shigehiro Nakajima
Part of the The Receptors book series (REC)


In 1971, Konishi and Otsuka found that application of physalaemin produced a depolarization in spinal motoneurons. Physalaemin is one of the tachykinins (named by Erspamer and Anastasi, 1966) extracted from frog skin (Erspamer et al., 1964). This was the first electrophysiological experiment on tachykinin effects. Subsequently, Otsuka et al. (1972) applied substance P (SP), which had just been identified and synthesized by Leeman’s group (Chang and Leeman, 1970; Chang et al., 1971; Tregear et al., 1971), to spinal motoneurons and obtained similar depolarizations. Since then, many papers have appeared dealing with the effects of tachykinins on the electrical activities of various kinds of cells, and in almost all cases tachykinins produced excitation (Konishi and Otsuka, 1974; Krnjevic and Morris, 1974; Henry et al., 1975; Henry, 1976; Guyenet and Aghajanian, 1977; Krnjevic, 1977; Randic and Miletic, 1977; Otsuka and Takahashi, 1977; Katayama and North, 1978; Nicoll, 1978; Katayama et al., 1979; Dun and Karczmar, 1979; Konishi et al., 1979; Vincent and Barker, 1979; Nicoll et al., 1980; Dun and Minota, 1981; Jan and Jan, 1982; Nowak and Macdonald, 1982; Adams et al., 1983; Cheeseman et al., 1983; Nakajima et al., 1985; Stanfield et al., 1985; Murase et al., 1986, Murase et al., 1989; Yamaguchi et al., 1990; Koyano et al., 1991, Konishi et al., 1993; Konishi et al., 1992; Shen and North, 1992).


Pertussis Toxin Sympathetic Neuron Atrial Cell Phosphoinositide Turnover Sympathetic Ganglion Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. R., Brown, D. A., and Constanti, A. (1982) Pharmacological inhibition of the M-current.J. Physiol. 332,223–262.PubMedGoogle Scholar
  2. Adams, P. R., Brown, D. A., and Jones, S. W. (1983) Substance P inhibits the M-current in bullfrog sympathetic neurones.Br. J. Pharmacol. 79,330–333.PubMedCrossRefGoogle Scholar
  3. Akasu, T., Gallagher, J. P., Koketsu, K., and Shinnick-Gallagher, P. (1984) Slow excitatory post-synaptic currents in bull-frog sympathetic neurones.J. Physiol. 351,583–593.PubMedGoogle Scholar
  4. Amatruda III, T. T., Steele, D. A., Slepak, V. Z., and Simon, M. I. (1991) Ga16, a G protein a subunit specifically expressed in hematopoietic cells.Proc. Natl. Acad. Sci. USA 88,5587–5591.PubMedCrossRefGoogle Scholar
  5. Anwyl, R. (1991) Modulation of vertebrate neuronal calcium channels by transmitters.Brain Res. Rev. 16,265–281.PubMedCrossRefGoogle Scholar
  6. Backus, K. H., Berger, T., and Kettenmann, H. (1991) Activation of neurokinin receptors modulates K’ and Cl-channel activity in cultured astrocytes from rat cortex.Brain Res. 541,103–109.PubMedCrossRefGoogle Scholar
  7. Beach, T. G., Tago, H., and McGeer, E. G. (1987) Light microscopic evidence for a substance P-containing innervation of the human nucleus basalis of Meynert.Brain Res. 408,251–257.PubMedCrossRefGoogle Scholar
  8. Bean, B. P. (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence.Nature 340,153–156.PubMedCrossRefGoogle Scholar
  9. Beech, D. J., Bernheim, L., and Hille, B. (1992) Pertussis toxin and voltage dependence distinguish multiple pathways modulating calicum channels of rat sympathetic neurons.Neuron 8,97–106.PubMedCrossRefGoogle Scholar
  10. Beech, D. J., Bernheim, L., Mathie, A., and Hille, B. (1991) Intracellular Cal’ buffers disrupt muscarinic suppression of Caz+ current and M current in rat sympathetic neurons.Proc. Natl. Acad. Sci. USA 88,652–656.PubMedCrossRefGoogle Scholar
  11. Belcher, G. and Ryall, R. W. (1977) Substance P and renshaw cells: a new concept of inhibitory synaptic interactions.J. Physiol. 272,105–119.PubMedGoogle Scholar
  12. Benson, D. M., Blitzer, R. D., and Landau, E. M. (1988) An analysis of the depolarization produced in guinea-pig hippocampus by cholinergic receptor stimulation.J. Physiol. 404,479–496.PubMedGoogle Scholar
  13. Benson, J. A. and Levitan, I. B. (1983) Serotonin increases an anomalously rectifying K+ current in theAplysianeuron R15.Proc. Natl. Acad. Sci. USA 80,3522–3525.PubMedCrossRefGoogle Scholar
  14. Bernheim, L., Beech, D. J., and Hille, B. (1991) A diffusible second messenger mediates one of the pathways coupling receptors to calcium channels in rat sympathetic neurons.Neuron 6,859–867.PubMedCrossRefGoogle Scholar
  15. Bjökroth, U., Rosell, S., Xu, J.-C., and Folkers, K. (1982) Pharmacological characterization of four related substance P antagonist.Acta Physiol. Scand. 116,167–173.CrossRefGoogle Scholar
  16. Bley, K. R. and Tsien, R. W. (1990) Inhibition of Caz+ and K+ channels in sympathetic neurons by neuropeptides and other ganglionic transmitters.Neuron 4,379–391.PubMedCrossRefGoogle Scholar
  17. Bolam, J. P., Ingham, C. A., Izzo, P. N., Levey, A.I.,Rye, D. B., Smith, A. D., and Wainer, B. H. (1986) Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: A double immunocytochemical study in the rat.Brain Res. 397,279–289.PubMedCrossRefGoogle Scholar
  18. Bosma, M. M. and Hille, B. (1989) Protein kinase C is not necessary for peptide-induced suppression of M current or for desensitization of the peptide receptors.Proc. Natl. Acad. Sci. USA 86,2943–2947.PubMedCrossRefGoogle Scholar
  19. Boyd, N. D., MacDonald, S. G., Kage, R., Luber-Narod, J., and Leeman, S. E. (1991) Substance P receptor biochemical characterization and interactions with G proteins, inSubstance P and Related Peptides: Cellular and Molecular Physiology.The Annals of the New York Academy of Sciences632(Leeman, S. E., Krause, J. E., and Lembeck, F., eds.), NY Academy of Sciences, New York, pp. 79–93.Google Scholar
  20. Boyd, N. D. and Leeman, S. E. (1987) Multiple actions of substance P that regulate the functional properties of acetylcholine receptors of clonal rat PC12 cells.J. Physiol. 389,69–97.PubMedGoogle Scholar
  21. Breitwieser, G. E. and Szabo, G. (1985) Uncoupling of cardiac muscarinic and f3adrenergic receptors from ion channels by a guanine nucleotide analogue.Nature 317,538–540.PubMedCrossRefGoogle Scholar
  22. Brown, A. M. and Birnbaumer, L. (1990) Ionic channels and their regulation by G protein subunits.Annu. Rev. Physiol. 52,197–213.PubMedCrossRefGoogle Scholar
  23. Brown, D. A. (1990) G-proteins and potassium currents in neurons.Annu. Rev. Physiol. 52,215–242.PubMedCrossRefGoogle Scholar
  24. Brown, D. A. and Adams, P. R. (1980) Muscarinic suppression of a novel voltage-sensitive K* current in a vertebrate neurone.Nature 283,673–676.PubMedCrossRefGoogle Scholar
  25. Brown, D. A. and Adams, P. R. (1987) Effects of phorbol dibutyrate on M currents and M current inhibition in bullfrog sympathetic neurons.Cell. Mol. Neurobiol. 7,255–269.PubMedCrossRefGoogle Scholar
  26. Brown, D. A. and Higashida, H. (1988) Inositol 1,4,5-Trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells.J. Physiol. 397,185–207.PubMedGoogle Scholar
  27. Brown, D. A., Marrion, N.Y., and Smart, T. G. (1989) On the transduction mechanism for muscarine-induced inhibition of M-current in cultured rat sympathetic neurones.J. Physiol. 413,469–488.PubMedGoogle Scholar
  28. Chang, M. M. and Leeman, S. E. (1970) Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P.J. Biol. Chem. 245,4784–4790.PubMedGoogle Scholar
  29. Chang, M. M., Leeman, S. E., and Niall, H. D. (1971) Amino-acid sequence of substance P.Nature New Biology 232,86–87.PubMedCrossRefGoogle Scholar
  30. CheesemanH. J.,Pinnock, R. D., and Henderson, G. (1983) Substance P excitation of rat locus coeruleus neurones. Eur. J. Pharmacol. 94,93–99.PubMedCrossRefGoogle Scholar
  31. Clapham, D. E. and Neher, E. (1984) Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells.J. Physiol. 347,255–277.PubMedGoogle Scholar
  32. Clapp, L. H., Sims, S. M., Singer, J. J., and Walsh, J. V., Jr. (1988) Cholinergic suppression of both endogenous and isoproterenol-induced M-current in isolated smooth muscle cells is mimicked by a diacylglycerol analog.Soc. Neurosci. Abstr. 14,1088.Google Scholar
  33. Coyle, J. T., Price, D. L., and DeLong, M. R. (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation.Science 219,1184–1190.PubMedCrossRefGoogle Scholar
  34. Devillier, P., Drapeau, G., Renoux, M., and Regoli, D. (1989) Role of the N-terminal arginine in the histamine-releasing activity of substance P, bradykinin and related peptides.Eur. J. Pharm. 168,53–60.CrossRefGoogle Scholar
  35. Dolphin, A. C. (1990) G-protein modulation of calcium currents in neurons.Annu. Rev. Physiol. 52,243–255.PubMedCrossRefGoogle Scholar
  36. Dun, N. J. and Karczmar, A. G. (1979) Actions of substance Pon sympathetic neurons.Neuropharmacology 18,215–218.PubMedCrossRefGoogle Scholar
  37. Dun, N. J. and Minota, S. (1981) Effects of substance Pon neurones of the inferior mesenteric ganglia of the guinea-pig.J. Physiol. 321,259–271.PubMedGoogle Scholar
  38. Dunlap, K. and Fischbach, G. D. (1978) Neurotransmitters decrease the calcium component of sensory neurone action potentials.Nature 276,837–839.PubMedCrossRefGoogle Scholar
  39. Dutar P. and Nicoll, R. A. (1988) Classification of muscarinic responses in hippocampus in terms of receptor subtypes and second-messenger systems: electrophysiological studiesin vitro. J. Neurosci. 8,4214–4224.Google Scholar
  40. Elmslie, K. S. (1992) Calcium current modulation in frog sympathetic neurones: Multiple neurotransmitters and G proteins.J. Physiol. 451,229–246.PubMedGoogle Scholar
  41. Elmslie, K. S., Zhou, W., and Jones, S. W. (1990) LHRH and GTP-y-S modify calcium current activation in bullfrog sympathetic neurons.Neuron 5,75–80.PubMedCrossRefGoogle Scholar
  42. Erspamer, V. and Anastasi, A. (1966) Polypeptides active on plain muscle in the amphibian skin, inHypotensive Peptides(Erdös, E.G., Back, N., and Sicuteri, F., eds.), Springer-Verlag, New York, pp. 63–75.Google Scholar
  43. Erspamer, V., Anastasi, A., Bertaccini, G., and Cei, J. M. (1964) Structure and pharmacological actions of physalaemin, the main active polypeptide of the skin ofPhysalaemus fuscumaculatus. Experientia. 20,489–490.CrossRefGoogle Scholar
  44. Farkas, R., Grigg, J. J., Nakajima, S., and Nakajima, Y. (1992) Effects of neurotensin on magnocellular cholinergic neurons from the nucleus basalis.Soc. Neurosci. Abstr. 18,1500.Google Scholar
  45. Fong, H. K. W., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Identification of a GTP-binding protein a subunit that lacks an apparent ADPribosylation site for pertussis toxin.Proc. Natl. Acad. Sci. USA 85,3066–3070.PubMedCrossRefGoogle Scholar
  46. Gilman, A.G. (1987) G proteins: transducers of receptor-generated signals.Annu. Rev. Biochem. 56,615–649.PubMedCrossRefGoogle Scholar
  47. Grigg, J. J., Koyano, K., Nakajima, S., and Nakajima, Y. (1991a) Peptide-induced reduction in calcium currents in rat nucleus basalis and locus ceruleus neurons.Biophys. J. 59,83a.Google Scholar
  48. Grigg, J. J., Kozasa, T., Nakajima, S., and Nakajima, Y. (1991b) Single channel properties of somatostatin-or met-enkephalin-activated, GTP-dependent inwardly rectifying K-conductance in cultured rat brain neurons.Soc. Neurosci. Abstr. 17,1097.Google Scholar
  49. Grigg, J. J., Kozasa, T., Nakajima, Y., and Nakajima, S. (1992) Single channel properties of the inwardly rectifying K-current activated by somatostatin or met-enkephalin in cultured rat brain neurons.Biophys. J. 61,A14.Google Scholar
  50. Gutowski, S., Smrcka, A., Nowak, L., Wu, D., Simon, M., and Sternweis, P. C. (1991) Antibodies to the aqsubfamily of guanine nucleotide-binding regulatory protein a subunits attenuate activation of phosphatidylinosito14,5-bisphosphate hydrolysis by hormones.J. Biol. Chem. 26620,519–20,524.Google Scholar
  51. Guyenet, P. G. and Aghajanian, G. K. (1977) Excitation of neurons in the nucleus locus coeruleus by substance P and related-peptides.Brain Res. 136,178–184.PubMedCrossRefGoogle Scholar
  52. Hagiwara, S. (1983)Membrane Potential-Dependent Ion Channels in Cell Mem- brane. Phylogenetic and Developmental Approaches, Raven Press, New York.Google Scholar
  53. Hanani, M. and Burnstock, G. (1984) Substance P evokes slow and fast responses in cultured myenteric neurons of the guinea pig.Neurosci. Lett. 48,19–23.PubMedCrossRefGoogle Scholar
  54. Hanley, M. R., Lee, C. M., Jones, L. M., and Michell, R. H. (1980) Similar effects of substance P and related peptides on salivation and on phosphatidylinositol turnover in rat salivary glands.Mol. Pharmacol. 18,78–83.PubMedGoogle Scholar
  55. Henry, J. L. (1976) Effects of substance Pon functionally identified units in cat spinal cord.Brain Res. 114,439–451.PubMedCrossRefGoogle Scholar
  56. Henry, J. L., Krnjevic, K., and Morris, M. E. (1975) Substance P and spinal neurones.Can. J. Physiol. Pharmacol. 53,423–432.PubMedCrossRefGoogle Scholar
  57. Hershey, A. D. and Krause, J. E. (1990) Molecular characterization of a functionalcDNA encoding the rat substance P receptor.Science 247,958–962.PubMedCrossRefGoogle Scholar
  58. Higashida, H. and Brown, D. A. (1986) Two polyphosphatidylinositide metabolites control two K* currents in a neuronal cell.Nature 323,333–335.PubMedCrossRefGoogle Scholar
  59. Hille, B. (1992a)Ionic Channels of Excitable MembranesSinauer Assoc., Sunderland, MA.Google Scholar
  60. Hille, B. (1992b) G protein-coupled mechanisms and nervous signaling.Neuron 9,187–195.CrossRefGoogle Scholar
  61. House, C. and Kemp, B. E. (1987) Protein kinase C contains a pseudosubstrate prototope in its regulatory domain.Science 238,1726–1728.PubMedCrossRefGoogle Scholar
  62. Ikeda, S. R. and Schofield, G. G. (1989) Somatostatin blocks a calcium current in rat sympathetic ganglion neurones.J. Physiol. 409,221–240.PubMedGoogle Scholar
  63. Inoue, M., Nakajima, S., and Nakajima, Y. (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism.J. Physiol. 407,177–198.PubMedGoogle Scholar
  64. Ito, H., Tung, R. T., Sugimoto, T., Kobayashi, I., Takahashi, K., Katada, T., Ui, M., and Kurachi, Y. (1992) On the mechanism of G protein ßy subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane.J. Gen. Physiol. 99,961–983.PubMedCrossRefGoogle Scholar
  65. Iyengar, R., Rich, K. A., Herberg, J. T., Grenet, D., Mumby, S., and Codina, J. (1987) Identification of a new GTP-binding protein.J. Biol. Chem. 262,9239–9245.PubMedGoogle Scholar
  66. Jan, L. Y. and Jan, Y. N. (1982) Peptidergic transmission in sympathetic ganglia of the frog.J. Physiol. 327,219–246.PubMedGoogle Scholar
  67. Jones, S. W. (1985) Muscarinic and peptidergic excitation of bull-frog sympathetic neurones.J. Physiol. 366,63–87.PubMedGoogle Scholar
  68. Kasai, H. (1992) Voltage-and time-dependent inhibition of neuronal calcium channels by a GTP-binding protein in a mammalian cell line.J. Physiol. 448,189–209.PubMedGoogle Scholar
  69. Katada, T., Oinuma, M., Kusakabe, K., and Ui, M. (1987) A new GTP-binding protein in brain tissues serving as the specific substrate of islet-activating protein, pertussis toxin.FEBS Lett. 213,353–358.PubMedCrossRefGoogle Scholar
  70. Katada, T. and Ui, M. (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein.Proc. Natl. Acad. Sci. USA 79,3129–3133.PubMedCrossRefGoogle Scholar
  71. Katayama, Y. and North, R. A. (1978) Does substance P mediate slow synaptic excitation within the myenteric plexus?Nature 274,387–388.PubMedCrossRefGoogle Scholar
  72. Katayama, Y., North, R. A., and Williams, J. T. (1979) The action of substance Pon neurons of the myenteric plexus of the guinea-pig small intestine.Proc. R. Soc. Lond. B 226,191–208.CrossRefGoogle Scholar
  73. Katz, B. (1949) Les constantes électriques de la membrane du muscle.Arch. Sci. Physiol. 3,285–299.Google Scholar
  74. Kawamoto, S. and Hidaka, H. (1984) 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platelets.Biochem. Biophys. Res. Comm. 125,258–264.PubMedCrossRefGoogle Scholar
  75. Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M., and Satoh, T. (1991) Structure and function of signal-transducing GTP-binding proteins.Annu. Rev. Biochem. 60,349–400.PubMedCrossRefGoogle Scholar
  76. Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Bar-Sagi, D., and Clapham, D. E. (1989) G-protein ßy-subunits activate the cardiac muscarinic K+-channel via phospholipase A2.Nature 337,557–560.PubMedCrossRefGoogle Scholar
  77. Kim, K-M., Nakajima, Y., and Nakajima, S. (1990) Effects of dopaminergic agonists on cultured substantia nigra neurons.Soc. Neurosci. Abstr. 16,81.Google Scholar
  78. Konishi, S. and Okamoto, T. (1985) The relationship between substance P-mediated synaptic response and intracellular cyclic nucleotide formation in the guinea-pig inferior mesenteric ganglion.Neurosci. Res. Suppl. 1S102.CrossRefGoogle Scholar
  79. Konishi, S. and Otsuka, M. (1971) Actions of certain polypeptides on frog spinal neurons.Jpn.. J. Pharmacol. 21,685–687.PubMedCrossRefGoogle Scholar
  80. Konishi, S. and Otsuka, M. (1974) Excitatory action of hypothalamic substance Pon spinal motoneurones of newborn rats.Nature 252,734–735.PubMedCrossRefGoogle Scholar
  81. Konishi, S., Otsuka, M., Folkers, K., and Rosell, S. (1983) A substance P antagonist blocks non-cholinergic slow excitatory postsynaptic potential in guinea-pig sympathetic ganglia.Acta Physiol. Scand. 117,157–160.PubMedCrossRefGoogle Scholar
  82. Konishi, S., Song, S.-Y., Ogawa, T., and Kanazawa, I. (1992) Fast and slow depolarization, produced by substance P and other tachykinins in sympathetic neurons of rat prevertebral ganglia.Neurosci. Res. 14,81–95.PubMedCrossRefGoogle Scholar
  83. Konishi, S., Tsunoo, A., and Otsuka, M. (1979) Substance P and noncholinergic excitatory synaptic transmission in guinea pig sympathetic ganglia.Proc. Jpn. Acad. 55,525–530.CrossRefGoogle Scholar
  84. Koyano, K., Grigg, J. J., Nakajima, S., and Nakajima, Y. (1990) Role of arachidonic acid metabolism in modulating the inward rectifier of brain neurons.Biophys. J. 57,314a.Google Scholar
  85. Koyano, K., Velimirovic, B. M., Grigg, J.J.,Nakajima, S., and Nakajima, Y. (1993) Two signal transduction mechanisms of substance P-induced depolarization in locus coeruleus neurons.Eur. J. Neurosci. 5,1189–1197.PubMedCrossRefGoogle Scholar
  86. Koyano, K., Velimirovic, B., Grigg, J. J., Nakajima, Y., and Nakajima, S. (1991) Substance P modulates two ionic currents through different transduction pathways in locus coeruleus neurons.Biophys. J. 59,39la.Google Scholar
  87. Krnjevic, K. (1977) Effects of substance P on central neurons in cats, inSubstance P(von Euler, U.S. and Pernow,B.,eds.), Raven Press, New York, pp. 217–230.Google Scholar
  88. Krnjevic, K. and Lekic, D. (1977) Substance P selectively blocks excitation of Renshaw cell by acetylcholine.Can. J. Physiol. Pharmacol. 55,958–961.PubMedCrossRefGoogle Scholar
  89. Krnjevic, K. and Morris, M. E. (1974) An excitatory action of substance Pon cuneate neurones.Can. J. Physiol. Pharmacol. 52,736–744.PubMedCrossRefGoogle Scholar
  90. Kuba, K. and Koketsu, K. (1976) Analysis of the slow excitatory postsynaptic poten-tial in bullfrog sympathetic ganglion cells.Jpn. J. Physiol. 26,651–669.PubMedCrossRefGoogle Scholar
  91. Kuffler, S. W. and Sejnowski, T. J. (1983) Peptidergic and muscarinic excitation at amphibian sympathetic synapses.J. Physiol. 341,257–278.PubMedGoogle Scholar
  92. Kurachi, Y., Ito, H., Sugimoto, T., Shimizu, T., MikiI.,and Ui, M. (1989) Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K` channel. Nature 337,555–557.PubMedCrossRefGoogle Scholar
  93. Kurachi, Y., Nakajima, T., and Sugimoto, T. (1986) On the mechanism of activation of muscarinic K* channels by adenosine in isolated atrial cells: Involvement of GTP- binding proteins.Pflüger’s Arch. 407,264–274.CrossRefGoogle Scholar
  94. Laniyonu, A., Sliwinski-Lis, E., and Fleming, N. (1988) Different tachykinin receptor subtypes are coupled to the phosphoinositide or cyclic AMP signal transduction pathways in rat submandibular cells.FEBS Lett. 240,186–190.PubMedCrossRefGoogle Scholar
  95. Lee, C. H., Park, D., Wu, D., Rhee, S. G., and Simon, M. I. (1992) Members of the G a subunit gene family activate phospholipase C ß isoenzymes.J. Biol. Chem. 267, 16,044–16,047.PubMedGoogle Scholar
  96. Lipscombe, D., Kongsamut, S., and R. W. Tsien (1989) a-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating.Nature 340,639–642.PubMedCrossRefGoogle Scholar
  97. Livett, B. G., Kozousek, V., Mizobe, F., and Dean, D. M. (1979) Substance P inhibits nicotinic activation of chromaffin cells.Nature 278,256–257.PubMedCrossRefGoogle Scholar
  98. Logothetis, D. E., Kurachi, Y., GalperJ.,Neer, E. J.,and Clapham, D. E. (1987) The ßy subunits of GTP-binding proteins activate the muscarinic K* channel in heart. Nature 325,321–326.PubMedCrossRefGoogle Scholar
  99. Lopez, H. S. and Adams, P. R. (1989) A G protein mediates the inhibition of the voltage-dependent potassium M current by muscarine, LHRH, substance P and UTP in bullfrog sympathetic neurons.Eur. J. Neurosci. 1,529–542.PubMedCrossRefGoogle Scholar
  100. Luini, A., Lewis, D., Guild, S., Schofield, G., and Weight, F. (1986) Somatostatin, an inhibitor of ACTH secretion, decreases cytosolic free calcium and voltage-dependent calcium current in a pituitary cell line.J. Neurosci. 6,3128–3132.PubMedGoogle Scholar
  101. Malenka, R. C., Madison, D. V., Andrade, R., and Nicoll, R. A. (1986) Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons.J. Neurosci. 6,475–480.PubMedGoogle Scholar
  102. Marchetti, C. Carbone, E., and Lux, H. D. (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflüger’s Arch. 406104–111.CrossRefGoogle Scholar
  103. Margiotta, J. F. and Berg, D. K. (1986) Enkephalin and substance P modulate synaptic properties of chick ciliary ganglion neurons in cell culture.Neuroscience 18,175–182.PubMedCrossRefGoogle Scholar
  104. Marrion, N. V., Adams, P. R., and Gruner, W. (1992) Multiple kinetic states underlying macroscopic M-currents in bullfrog sympathetic neurons.Proc. R. Soc. Lond. B 248,207–214.CrossRefGoogle Scholar
  105. MatsudaH.,Saigusa, A., and Irisawa, H. (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mgt+. Nature 325,156–159.PubMedCrossRefGoogle Scholar
  106. Matsuoka, M., Itoh, H., Kozasa, T., and Kaziro, Y. (1988) Sequence analysis of cDNA and genomic DNA for a putative pertussis toxin-insensitive guanine nucleotide-binding regulatory protein subunit.Proc. Natl. Acad. Sci. USA 85,5384–5388.PubMedCrossRefGoogle Scholar
  107. Matthews, G., Neher, E., and Penner, R. (1989a) Second messenger-activated calcium influx in rat peritoneal mast cells.J. Physiol. 418,105–130.Google Scholar
  108. Matthews, G., Neher, E., and Penner, R. (1989b) Chloride conductance activated by external agonists and internal messengers in rat peritoneal mast cells.J. Physiol. 418,131–144.Google Scholar
  109. Mau, S. E. and Saermark, T. (1991) Substance P stimulation of polyphosphoinositide hydrolysis in rat anterior pituitary membranes involves a GTP-dependent mechanism.J. Endocrin. 130,63–70.CrossRefGoogle Scholar
  110. Mayer, E. A., Loo, D. D. F., Snape, W. J., Jr., and Sachs, G. (1990) The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.J. Physiol. 420,47–71.PubMedGoogle Scholar
  111. Mihara, S., North, R. A., and Surprenant, A. (1987) Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones.J. Physiol. 390,335–355.PubMedGoogle Scholar
  112. Miyake, M., Christie, M. J., and North, R. A. (1989) Single potassium channels opened by opioids in rat locus ceruleus neurons.Proc. Natl. Acad. Sci. USA86, 3419–3422.PubMedCrossRefGoogle Scholar
  113. Mousli, M., Bronner, C., Bockaert, J., Rouot, B., and Landry, Y. (1990) Interaction of SP, compound 48/80 and mastoparan with the a-subunit C-terminus of G protein.Immunology Lett. 25,355–358.CrossRefGoogle Scholar
  114. Murase, K., Ryu, P. D., and Randic, M. (1986) Substance P augments a persistent slow inward calcium-sensitive current in voltage-clamped spinal dorsal horn neurons of therat. Brain Res. 365,369–376.CrossRefGoogle Scholar
  115. Murase, K., Ryu, P. D., and Randic, M. (1989) Tachykinins modulate multiple ionic conductances in voltage-clamped rat spinal dorsal horn neurons.J. Neurophysiol. 61,854–865.PubMedGoogle Scholar
  116. Nakajima, T., Sugimoto, T., and Kurachi, Y. (1991) Platelet-activating factor acti-vates cardiacG Kvia arachidonic acid metabolites.FEBS Lett. 289,239–243.PubMedCrossRefGoogle Scholar
  117. Nakajima, Y., Nakajima, S., and Inoue, M. (1988) Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons.Proc. Natl. Acad. Sci. USA 85,3643–3647.CrossRefGoogle Scholar
  118. Nakajima, Y., Nakajima, S., and Inoue, M. (1991a) Substance P induced inhibition of potassium channels via a pertussis toxin-insensitive G protein, inSubstance P and Related Peptides: Cellular and Molecular Physiology. The Annals of the New York Academy of Sciences 632(Leeman, S. E., Krause, J. E., and Lembeck, F., eds.), NY Academy of Sciences, New York, pp. 103–111.Google Scholar
  119. Nakajima, Y., Nakajima, S., Obata, K., Carlson, C. G., and Yamaguchi, K. (1985) Dissociated cell culture of cholinergic neurons from nucleus basalis of Meynert and other basal forebrain nuclei.Proc. Natl. Acad. Sci. USA 82,6325–6329.PubMedCrossRefGoogle Scholar
  120. Nakajima, Y., Stanfield, P.R., Yamaguchi, K. and Nakajima, S. (1991b) Substance P excites cultured cholinergic neurons in the basal forebrain, inThe Basal Forebrain:Anatomy to Function(Napier, T.C., Kalivas, P.W., and Hanin, I., eds.), Plenum, New York, pp. 157–167.CrossRefGoogle Scholar
  121. Neher, E., Marty, A., Fukuda, K., Kubo, T., and Numa, S. (1988) Intracellular calcium release mediated by two muscarinic receptor subtypes.FEBS Lett. 240,88–94.PubMedCrossRefGoogle Scholar
  122. Nestler, E. J. and Greengard, P. (1984)Protein Phosphorylation in the NervousSystemWiley, New York.Google Scholar
  123. Nicoll, R. A. (1978) The action of thyrotropin-releasing hormone, substance P and related peptides on frog spinal motoneurons.J. Pharmacol. Exp. Ther. 207,817–824.PubMedGoogle Scholar
  124. Nicoll, R. A., Schenker, C., and Leeman, S. E. (1980) Substance P as a transmitter candidate.Annu. Rev. Neurosci. 3,227–268.PubMedCrossRefGoogle Scholar
  125. North, R. A. (1989) Drug receptors and the inhibition of nerve cells.Br. J. Pharmacol. 98,13–28.PubMedCrossRefGoogle Scholar
  126. North, R. A. and Uchimura, N. (1989) 5-Hydroxytryptamine acts at 5-HT2receptors to decrease potassium conductance in rat nucleus accumbens neurones.J. Physiol. 417,1–12.PubMedGoogle Scholar
  127. North, R. A., Williams, J. T., Surprenant, A., and Christie, M. J. (1987) µ and S receptors belong to a family of receptors that are coupled to potassium channels.Proc. Natl. Acad. Sci. USA 84,5487–5491.PubMedCrossRefGoogle Scholar
  128. Nowak, L. M. and Macdonald, R. L. (1982) Substance P: Ionic basis for depolarizing responses of mouse spinal cord neurons in cell culture.J. Neurosci. 2,1119–1128.PubMedGoogle Scholar
  129. Otsuka, M. and Konishi, S. (1977) Electrophysiological and neurochemical evidence for substance P as a transmitter of primary sensory neurons, inSubstance P(von Euler, U.S. and Pernow, B., eds.), Raven Press, New York, pp. 207–216.Google Scholar
  130. Otsuka, M., Konishi, S., and Takahashi, T. (1972) A further study of the motoneurondepolarizing peptide extracted from dorsal roots of bovine spinal nerves.Proc. Jpn. Acad. 48,747–752.Google Scholar
  131. Otsuka, M. and Takahashi, T. (1977) Putative peptide neurotransmitters.Annu. Rev. Pharmacol. Toxicol. 17,425–439.PubMedCrossRefGoogle Scholar
  132. Owen, D. G., Marsh, S. J., and Brown, D. A. (1990) M-current noise and putative M-channels in cultured rat sympathetic ganglion cells.J. Physiol. 431,269–290.PubMedGoogle Scholar
  133. Petersen, O. H. and Maruyama, Y. (1984) Calcium-activated potassium channels and their role in secretion.Nature 307,693–696.PubMedCrossRefGoogle Scholar
  134. Pfaffinger, P. (1988) Muscarine and t-LHRH suppress M-current by activating an IAP-insensitive G-protein.J. Neurosci. 8,3343–3353.PubMedGoogle Scholar
  135. Pfaffinger, P. J., Leibowitz, M. D., Subers, E. M., Nathanson, N. M., Almers, W., and Hille, B. (1988) Agonists that suppress M-current elicit phosphoinositide turnover and Ca’ transients, but these events do not explain M-current suppression.Neuron 1477–484.PubMedCrossRefGoogle Scholar
  136. Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M., and Hille, B. (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel.Nature 317,536–538.PubMedCrossRefGoogle Scholar
  137. Piomelli, D., Volterra, A., Dale, N., Siegelbaum, S. A., Kandel, E. R., Schwartz, J.H.,and Belardetti, F. (1987) Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition ofAplysiasensory cells.Nature 328,38–43.Google Scholar
  138. Putney, J. W. Jr., Bird, G. St.J.,Horstman, D. A., Hughes, A. R., Menniti, F. S., Nogimori, K., Obie,J.,Oliver, K. G., Sugiya, H., and Takemura, H. (1991) Role of inositol phosphates in the actions of substance P on NK1receptors in exocrine gland cells, inSubstance P and Related Peptides: Cellular and Molecular Physiology. The Annals of The New York Academy of Sciences 632(Leeman, S. E., Krause, J. E., and Lembeck, F., eds.), NY Academy of Sciences, New York, pp. 94–102.Google Scholar
  139. Ramirez, O. A. Chiappinelli, V. A. (1987) Properties of tachykinin receptors examined by intracellular recording from chick sympathetic ganglia.Brain Res. 414,228–238.PubMedCrossRefGoogle Scholar
  140. Randic, M. and Miletic, V. (1977) Effect of substance P in cat dorsal horn neurones activated by noxious stimuli.Brain Res. 128,164–169.PubMedCrossRefGoogle Scholar
  141. Rane, S. G., Walsh, M. P., McDonald, J. R., and Dunlap, K. (1989) Specific inhibitors of protein kinase C block transmitter-induced modulation of sensory neuron calcium current.Neuron 3,239–245.PubMedCrossRefGoogle Scholar
  142. Rangachari, P. K., Prior, T., and McWade, D. (1990) Epithelial and mucosal preparations from canine colon: responses to substance P.J. Pharmacol. Exp. Ther. 254,1076–1083.PubMedGoogle Scholar
  143. Role, L. W. (1984) Substance P modulation of acetylcholine-induced currents in embryonic chicken sympathetic and ciliary ganglion neurons.Proc. Natl. Acad. Sci. USA 81,2924–2928.PubMedCrossRefGoogle Scholar
  144. Role, L. W., Leeman, S. E., and Perlman, R. L. (1981) Somatostatin and substance P inhibit catecholamine secretion from isolated cells of guinea-pig adrenal medulla.Neuroscience 6,1813–1821.PubMedCrossRefGoogle Scholar
  145. Ryu, P. D. and Randic, M. (1990) Low-and high-voltage-activated calcium currents in rat spinal dorsal horn neurons.J. Neurophysiol. 63,273–275.PubMedGoogle Scholar
  146. Sakmann, B., Noma, A., and Trautwein, W. (1983) Acetylcholine activation of single muscarinic K’ channels in isolated pacemaker cells of the mammalian heart.Nature 303,250–253.PubMedCrossRefGoogle Scholar
  147. Scherer, R. W. and Breitwieser, G. E. (1990) Arachidonic acid metabolites alter G protein-mediated signal transduction in heart. Effects on muscarinic K* channels.J. Gen. Physiol. 96,735–755.PubMedCrossRefGoogle Scholar
  148. Schultz, G., Rosenthal, W., Hescheler, J., and Trautwein, W. (1990) Role of G proteins in calcium channel modulation.Annu. Rev. Physiol. 52,275–292.PubMedCrossRefGoogle Scholar
  149. Schumann, M. A. and Gardner, P. (1989) Modulation of membrane K* conductance in T-lymphocytes by substance P via a GTP-binding protein.J. Membrane Biol. 111,133–139.CrossRefGoogle Scholar
  150. Schweitzer, P., Madamba, S., and Siggins, G.R. (1990) Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current.Nature 346,464–467.PubMedCrossRefGoogle Scholar
  151. Selyanko, A. A., Stansfeld, C. E., and Brown, D. A. (1992) Closure of potassium M-channels by muscarinic acetylcholine-receptor stimulants requires a diffusible messenger.Proc. R. Soc. Lond. B 250,119–125.CrossRefGoogle Scholar
  152. Shapiro, M. S. and Hille, B. (1993) Substance P and somatostatin inhibit calcium channels in rat sympathetic neurons via different G protein pathways.Neuron 1011–20.PubMedCrossRefGoogle Scholar
  153. Shen, K.-Z. and North, R.A. (1992) Substance P opens cation channels and closes potassium channels in rat locus coeruleus neurons.Neuroscience 50,345–353.PubMedCrossRefGoogle Scholar
  154. Simasko S. M., Durkin, J. A., and Weiland, G. A. (1987) Effects of substance P on nicotinic acetylcholine receptor function in PC12 cells.J. Neurochem. 49,253–260.PubMedCrossRefGoogle Scholar
  155. Simmons, L. K., Schuetze, S. M., and Role, L. W. (1990) Substance P modulates single-channel properties of neuronal nicotinic acetylcholine receptors.Neuron 2,393–403.CrossRefGoogle Scholar
  156. Simmons, M. A. and Mather, R. J. (1991) Selectivity of the effects of guanosine-5’0-(2-thiodiphosphate) on agonist inhibition of the M-current in amphibian sympathetic neurons.J. Neurosci. 112130–2134.PubMedGoogle Scholar
  157. Simon, M. I., Strathmann, M. P., and Gautam, N. (1991) Diversity of G proteins in signal transduction.Science 252,802–808.PubMedCrossRefGoogle Scholar
  158. Sims, S. M., Walsh, J. V., Jr., and Singer, J. J. (1986) Substance P and acetylcholine both suppress the same K+ current in dissociated smooth muscle cells.Amer. J. Physiol. 251,C580–0587.PubMedGoogle Scholar
  159. Smrcka, A. V., Hepler, J. R., Brown, K. O., and Sternweis, P. C. (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq.Science 251,804–807.PubMedCrossRefGoogle Scholar
  160. Soejima, M. and Noma, A. (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells.Pflüger’s Arch. 400,424–431.CrossRefGoogle Scholar
  161. Song, S.-Y., Iwashita, S., Noguchi, K., and Konishi, S. (1988) Inositol triphosphate-linked calcium mobilization couples substance P receptors to conductance increase in a rat pancreatic acinar cell line.Neurosci. Lett. 95,143–148.PubMedCrossRefGoogle Scholar
  162. Stallcup, W. B. and Patrick, J. (1980) Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line.Proc. Natl. Acad. Sci. USA 77,634–638.PubMedCrossRefGoogle Scholar
  163. Stanfield, P. R., Nakajima, Y., and Yamaguchi, K. (1985) Substance P raises neuronal membrane excitability by reducing inward rectification.Nature 315,498–501.PubMedCrossRefGoogle Scholar
  164. Stanfield, P. R., Standen, N. B., Leech, C. A., and Ashcroft, F. M. (1981) Inward rectification in skeletal muscle fibres, inAdv. Physiol. Sci..vol. 5:Molecular and Cellular Aspects of Muscle Function(Varger, E., Kövér, A., Kovács, T., and Kovács, L., eds.), Pergamon Press, New York, pp. 247–262.Google Scholar
  165. Strathmann, M. and Simon, M. I. (1990) G-protein diversity: A distinct class of a subunits is present in vertebrates and invertebrates.Proc. Natl. Acad. Sci. USA 87,9113–9117.PubMedCrossRefGoogle Scholar
  166. Sun, X. P., Supplisson, S., Torres, R., Sachs, G., and Mayer, E. (1992) Characterization of large-conductance chloride channels in rabbit colonic smooth muscle.J. Physiol. 448,355–382.PubMedGoogle Scholar
  167. Surprenant, A. and North, R. A. (1988) Mechanism of synaptic inhibition by noradrenaline acting at a2adrenoceptors.Proc. R. Soc. Lond. B. 234,85–114.PubMedCrossRefGoogle Scholar
  168. Tamaoki, T., NomotoH.,TakahashiI.,Kato, Y., Morimoto, M., and Tomita, F. (1986) Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem. Biophys. Res. Comm. 135,397–402.PubMedCrossRefGoogle Scholar
  169. Taylor, C. W., Merritt, J. E., Putney, J. W., Jr., and Rubin, R. P. (1986) A guanine nucleotide-dependent regulatory protein couples substance P receptors to phospholipase C in rat parotid gland.Biochem. Biophys. Res. Comm. 136,362–368.PubMedCrossRefGoogle Scholar
  170. Taylor, S.J.,Chae, H. Z., Rhee, S. G., and Exton, J. H. (1991) Activation of the 131 isozyme of phospholipase C by a subunits of the Gqclass of G proteins.Nature 350,516–518.PubMedCrossRefGoogle Scholar
  171. Terry, R. D. and Katzman, R. (1983) Senile dementia of the Alzheimer type.Ann. Neurol. 14,497–506.PubMedCrossRefGoogle Scholar
  172. Tokimasa, T., Ishimatsu, M., and Akasu, T. (1992) Substance-P modulates separate set of potassium currents in bullfrog primary afferent neurons.Soc. Neurosci. Abstr. 18,796.Google Scholar
  173. Tregear, G. W., Niall, H. D., Potts, J. T. Jr., Leeman, S. E., and Chang, M. M. (1971) Synthesis of substance P.Nature New Biol. 232,87–89.PubMedGoogle Scholar
  174. Trussell, L. O. and Jackson, M. B. (1985) Adenosine-activated potassium conduc-tance in cultured striatal neurons.Proc. Natl. Acad. Sci. USA 82,4857–4861.PubMedCrossRefGoogle Scholar
  175. Trussell, L. O. and Jackson, M. B. (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons.J. Neurosci. 7,3306–3316.PubMedGoogle Scholar
  176. Tsuji, S., Minota, S., and Kuba, K. (1987) Regulation of two ion channels by a common muscarinic receptor-transduction system in a vertebrate neuron.Neurosci. Lett. 81,139–145.PubMedCrossRefGoogle Scholar
  177. Tsunoo, A., Yoshii, M., and Narahashi, T. (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108–15 cells.Proc. Natl. Acad. Sci. USA 83,9832–9836.PubMedCrossRefGoogle Scholar
  178. Vandenberg, C. A. (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions.Proc. Natl. Acad. Sci. USA 84,2560–2564.PubMedCrossRefGoogle Scholar
  179. Velimirovic, B., Koyano, K., Nakajima, S., and Nakajima, Y. (1991) Substance P, somatostatin and met-enkephalin regulate the same K-channel in cultured noradrenergic neurons from the locus ceruleus.Soc. Neurosci. Abstr.17, 1474.Google Scholar
  180. Vincent, J.-D. and Barker, J. L. (1979) Substance P: evidence for diverse roles in neuronal function from cultured mouse spinal neurons.Science205, 1409–1412.PubMedCrossRefGoogle Scholar
  181. Wanke, E., Ferroni, A., Malgaroli, A., Ambrosini, A., Pozzan, T., and Meldolesi, J. (1987) Activation of a muscarinic receptor selectively inhibits a rapidly inactivated Cat+ current in rat sympathetic neurons.Proc. Natl. Acad. Sci. USA 84,4313–4317.PubMedCrossRefGoogle Scholar
  182. West, R. E. Jr., Moss, J., Vaughan, M., Liu, T., and Liu, T.-Y. (1985) Pertussis toxin-catalyzed ADP-ribosylation of transducin. J.Biol. Chem.260, 14,428–14,430.Google Scholar
  183. Wilkie, T. M., Scherle, P. A., Strathmann, M. P., Slepak, V. Z., and Simon, M. I. (1991) Characterization of G protein a subunits in the G class: Expression in murine tissues and in stromal and hematopoietic cell lines.roc. Natl. Acad. Sci. USA 88,10,049–10,053.Google Scholar
  184. Willard, A. L. and Nishi, R. (1985) Neurons dissociated from rat myenteric plexus retain differentiated properties when grown in cell culture.Neuroscience 16,201–211.PubMedCrossRefGoogle Scholar
  185. Williams, J. T., North, R. A., and Tokimasa, T. (1988) Inward rectification of resting and opiate-activated potassium currents in rat locus coeruleus neurons.J. Neurosci. 8,4299–4306.PubMedGoogle Scholar
  186. Womack, M. D., MacDermott, A. B., and Jessell, T. M. (1988) Sensory transmitters regulate intracellular calcium in dorsal horn neurons.Nature 334,351–353.PubMedCrossRefGoogle Scholar
  187. Wu, D., Lee, C. H., Rhee, S. G., and Simon, M. I. (1992) Activation of phospholipase C by the cc subunits of the Gqand G11proteins in transfected Cos-7 cells.J. Biol. Chem. 267,1811–1817.PubMedGoogle Scholar
  188. Yakel, J. L., Trussell, L. O., and Jackson, M. B. (1988) Three serotonin responses in cultured mouse hippocampal and striatal neurons.J. Neurosci. 8,1273–1285.PubMedGoogle Scholar
  189. Yamaguchi, K., Nakajima, Y., Nakajima, S., and Stanfield, P. R. (1990) Modulation of inwardly rectifying channels by substance P in cholinergic neurones from rat brain in culture.J. Physiol. 426,499–520.PubMedGoogle Scholar
  190. Yang, J. and Tsien, R. W. (1992) Enhancement of neuronal N- and L-type Cat+ channel activity by protein kinase C.Soc. Neurosci. Abstr. 18,1271.Google Scholar
  191. Yatani, A., Codina, J., Brown, A. M., and Birnbaumer, L. (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory proteinG K . Science 235207–211.PubMedCrossRefGoogle Scholar
  192. Yokota, Y., Sasai, Y., Tanaka, K., Fujiwara, T., Tsuchida, K., Shigemoto, R., Kakizuka, A., Ohkubo, H. and Nakanishi, S. (1989) Molecular characterization of a functional CDNA for rat substance P receptor.J. Biol. Chem. 264,17,649–17,652.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Yasuko Nakajima
  • Shigehiro Nakajima

There are no affiliations available

Personalised recommendations