Immunodiagnostic Assays

  • Michael G. Pappas


Immunodiagnostic assays are procedures that utilize products of the immune response as integral parts of the test. Basically, immunodiagnostic assays use antibodies generated either against a single antigen or antigens associated with a specific analyte, pathogen, or disease condition. Historically, polyclonal antibodies generated against antigens of interest were produced in small animals, such as mice, rats, rabbits, and goats, by injecting the antigen preparation with an adjuvant (such as Freund’s complete or incomplete adjuvant), according to a schedule previously determined to give a maximum immune response. The test animals typically respond to the antigen preparation by producing antibodies to every recognizable antigenic epitope, thus inducting a polyclonal immunoglobulin response. Immunoglobulins are composed of two sets of identical amino acid chains; two heavy chains and two shorter light chains. Heavy chains are connected to each other by two or more disulfide bonds, whereas each light chain is connected to a heavy chain by one disulfide bond. The amino (N) terminus of a light and heavy chain compose the hypervariable amino acid region, or the “Fab” portion of the antibody molecule, whereas the carboxylic acid (COOH) terminus of both heavy chains compose the crystallizable, or Fc portion of the antibody (see Fig.17.1).


Enzyme Immunoassay Visceral Leishmaniasis Complement Fixation Antigen Preparation Patient Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Pertinent Reading


  1. Bakerman, S. 1980. Enzyme immunoassays.Lab. Management(August) pp. 21–29.Google Scholar
  2. Better, M. and A.H. Horwitz. 1989. Expression of engi­neered antibodies and antibody fragments in microorganisms.Methods Enzymol.178:476–496.PubMedCrossRefGoogle Scholar
  3. Beutner, E.H., S. Krasny, V. Kumar, R. Taylor, and T.P. Chorzelski. 1983. Prospects and problems in the definition and standardization of immuno­fluorescence. in:Defined Immunofluorescence and Related Cytochemical Methods.(Eds., E.H. Beutner, R.J. Nisengard, and B. Albini) Annals of the New York Academy of Sciences, vol. 420, pp. 28–54.Google Scholar
  4. Bidart, J.M., M. Ozturk, and D.H. Bellet. 1985. Identi­fication of epitopes associated with hCG and the ß-hCG carboxyl terminus by monoclonal anti­bodies produced against a synthetic peptide.J. Immunol.134:457–464.PubMedGoogle Scholar
  5. Carter, J.H. 1984. Enzyme immunoassays: Practical aspects of their methodology.J. Clin. Immunoassay7:64–72.Google Scholar
  6. Coons, A.H., H.J. Creech, R.N. Jones, and E. Berliner. 1942. The demonstration of pneumococcal anti­gens in tissues by the use of fluorescent antibody.J. Immunol.45:159–170.Google Scholar
  7. Coulis, P.A., J.J.G. Wang, E.P. Kang, W. Present, and C.Y. Wang. 1987. Peptide-based immunodiag­nosis of retroviral infections.ACPRNovember, pp. 34–43.Google Scholar
  8. Drysdale, J.W. 1983. Ferritin as a tumor marker.J. Clin. Immunoassay6:234–240.Google Scholar
  9. Engvall, E. and P. Perlmann. 1971. Enzyme linked immunosorbent assay ELISA: Quantitative assay for IgG.Immunochemistry8:871–874.PubMedCrossRefGoogle Scholar
  10. Hosoda, H., W. Takasaki, T. 0e, R. Tsukamoto, and T. Nambara. 1986. A comparison of chromogenic substrates for horseradish peroxidase as label in steroid enzyme immunoassay.Chem. Pharm. Bull.34:4177–4180.PubMedCrossRefGoogle Scholar
  11. Hubbard, R. 1983. Monoclonal antibodies: produc­tion, properties and applications. in:Topics in Enzyme Fermentation Technology(vol.7).(Ed., A. Wiseman) Ellis Horwood, Chichester, UK, pp. 196–263.Google Scholar
  12. Kohler, G. and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity.Nature256:495–497.PubMedCrossRefGoogle Scholar
  13. Kohler, G. and C. Milstein. 1976. Derivation of spe­cific antibody producing tissue culture and tumor lines by cell fusion.Eur. J. Immunol.6:511–519.PubMedCrossRefGoogle Scholar
  14. Korkolainen, M., S. Kontio, J. Korpela, A. Narvanen, P. Partenen, J. Suni, A. Vaheri, and M.-L. Huhtala. 1988. Research on AIDS testing: Synthetic peptide EIA.Lab. Managementpp. 19–21.Google Scholar
  15. Kricka, L.J. 1991. Chemiluminescent and bioluminescent techniques.Clin. Chem.37:1472–1481.PubMedGoogle Scholar
  16. Levine, B.B., A. Ojeda, and B. Benacerraf. 1963. Studies on artificial antigens.III.The genetic control of the immune response at the carrier level.PNAS (USA)71:1574–1577.Google Scholar
  17. Manser, T., L.J. Wysocki, T. Gridley, R.I. Near, and M.L. Gefter. 1985. The molecular evolution of the immune responses.Immunol. Today6:94–101.CrossRefGoogle Scholar
  18. Marshall, J.D., W.C. Eveland, and C.W. Smith. 1958. Superiority of fluorescein isothiocyanate (Riggs) for fluorescence antibody technique with a modi­fication of its application.Proc. Soc. Exp. Biol. Med.98:898–900.PubMedGoogle Scholar
  19. Marquez, E., J. Bryant, and M. Pappas. 1989. Enzyme immunoassay for the detection of Lyme borrel­iosis.J. Clin. Immunoassay12:158–160.Google Scholar
  20. McKinney, R.M. and W.B. Cherry. 1985. Immuno­fluorescence microscopy. in:Manual of Clinical Microbiology.(Eds., E.H. Lennette, A. Ballows, W.J. Hauser, Jr., et al.) American Society of Microbiol­ogy, Washington, DC, pp. 891–897.Google Scholar
  21. Milstein, C. 1980. Monoclonal antibodies.Scient. Am.243:56–64.CrossRefGoogle Scholar
  22. Ngo, T.T. and H.M. Lenhoff. 1980. Enzyme modu­lators as tools for the development of homoge­neous enzyme immunoassays.FEBS Lett. 116: 285–288.PubMedCrossRefGoogle Scholar
  23. Nowinski, R.C., M.R. Tam, L.C. Goldstein, L. Stong, C. Kuo, L. Corey, W.E. Stamm, H.H. Handsfield, J.S. Knapp, and K.K. Holmes. 1983. Monoclonal antibodies for diagnosis of infectious diseases in humans.Science219:637–644.PubMedCrossRefGoogle Scholar
  24. Pappas, M.G. 1985. Fluorescent microspheres display a wide range of scientific applications.Biomed. Prod.10:23–28.Google Scholar
  25. Pappas, M.G. 1987. New tests may improve Third World health care.Clin. Chem. News13:5.Google Scholar
  26. Pappas, M.G. 1988. Dot immunobinding assay (Dot-ELISA) for rapid clinical serodiagnosis of protozoan and metazoan diseases. in:Handbook of Immunoblotting of Proteins(vol. 2). (Eds., O. Bjerrum and N. Heegaard) CRC Press, Boca Raton, pp. 145–157.Google Scholar
  27. Pappas, M.G. 1988. Dot Enzyme-Linked Immuno­sorbent Assay (Dot-ELISA). in:Complementary Immunoassays.(Ed., W.P. Collins) Wiley, New York, pp. 113–134.Google Scholar
  28. Pappas, M.G., R. Hajkowski, C.L. Diggs, and W.T. Hockmeyer. 1983. Dot enzyme-linked immuno­sorbent assay (Dot-ELISA): A micro technique for the rapid diagnosis of visceral leishmaniasis.J. Immunol. Methods64:205–214.PubMedCrossRefGoogle Scholar
  29. Pappas, M.G., R. Hajkowski, C.L. Diggs, and W.T. Hockmeyer. 1984. Development of an antigen-conservative enzyme immunoassay (Dot-ELISA) for the rapid diagnosis of human leishmaniasis.Trans. Roy. Soc. Trop. Med. Hyg.77:425–426.CrossRefGoogle Scholar
  30. Pappas, M.G., R. Hajkowski, C.L. Diggs, and W.T. Hockmeyer. 1985. Disposable nitrocellulose filtration plates simplify the Dot-ELISA for serodiagnosis of visceral leishmaniasis.Ann. Trop. Med. Parasitol.79:147–151.PubMedGoogle Scholar
  31. Pappas, M.G., R. Hajkowski, and W.T. Hockmeyer. 1984. Standardization of the dot-enzyme-linked immunosorbent assay (Dot-ELISA) for human visceral leishmaniasis.Am. J. Trop. Med. Hyg.33:1105–1111.PubMedGoogle Scholar
  32. Pappas, M.G., R. Hajkowski, W.T. Hockmeyer, and C.L. Diggs. 1986. Dipstick serodiagnosis of parasitic diseases using the dot enzyme-linked immunosorbent assay (Dot-ELISA).Fed. Abstr.45:858.Google Scholar
  33. Pappas, M.G., R. Hajkowski, D.B. Tang, and W.T. Hockmeyer. 1985. Reduced false positive reactions in the Dot-ELISA for human visceral leishmaniasis.Clin. Immunol. Immunopathol.34:392–396.PubMedCrossRefGoogle Scholar
  34. Pritchard, J.A.V., W.H. Sutherland, J.E. Siddall, A.J. Bater, and T.J. Deeley. 1983. Fluorescent probes for the detection of malignant disease. in:Defined Immunofluorescence and Related Cytochemical Methods.(Eds., E.H. Beutner, R.J. Nisengard, and B. Albini) Annals of the New York Academy of Sciences, vol. 420, New York, pp. 219–228.Google Scholar
  35. Rubinstein, K.E., R.S. Schneider, and E.F. Ullmann. 1972. Homogeneous enzyme-immunoassay. A new immunochemical technique.Biochem. Biophys. Res. Commun.47:846–851.CrossRefGoogle Scholar
  36. Scott, M.G. 1985. Monoclonal antibodies-Approach­ing adolescence in diagnostic immunoassays.Trends Biotech.3:7.CrossRefGoogle Scholar
  37. Sela, M. 1966. Immunological studies with synthetic polypeptides.Adv. Immunol.5:29–129.PubMedCrossRefGoogle Scholar
  38. Suresh, M.R., A.C. Cuello, and C. Milstein. 1986. Bispecific monoclonal antibodies from hybrid­omas.Methods Enzymol. 121: 210–228.PubMedCrossRefGoogle Scholar
  39. Taylor, R.G. and T.R. Perez. 1978. Serology of amebiasis using the FIAX® system.Arch. Invest. Med. (Mexico)9(Supp1.1):363–366.Google Scholar
  40. Walton, B.C., M.G. Pappas, M. Sierra, Jr., R. Hajkowski, P.R. Jackson, and R. Custodio. 1987. Field use of the Dot-ELISA test for human vis­ceral leishmaniasis in Honduras.Bull. PAHO20:147–156.Google Scholar
  41. Wheatley, M. and R. Langer. 1987. Particles as drug delivery systems.Particul. Sci. Technol.5:53–64.CrossRefGoogle Scholar
  42. Wilkinson, M.C., J. Hearn, F.H. Karpowicz, and M. Chainey. 1987. The stability of latex particles in aque­ous suspensions.Particul. Sci. Technol.5:65–82.CrossRefGoogle Scholar
  43. Yalow, R.S. and S. Berson. 1960. Immunoassay of endogenous insulin in man.J. Clin. Invest.39:1157­1175.Google Scholar
  44. Yolken, R.H. 1985. Solid phase immunoassays for detection of microbial antigens in body fluids. in:Manual of Clinical Microbiology.(Eds., E.H. Lennette, A. Ballows, W.J. Hauser, Jr., et al.) American Society of Microbiology, Washington, DC, pp. 949–957.Google Scholar
  45. Yolken, R.H., F. Leister, L. Whitcomb, D. Davis, and M.J. Mears. 1983. Enzyme immunoassays for the diagnosis of viral infections. in:Defined Immuno­fluorescence and Related Cytochemical Methods.(Eds., E.H. Beutner, R.J. Nisengard, and B. Albini) Annals of the New York Academy of Sciences, vol. 420, pp. 381–390.Google Scholar


  1. Biotechnology-Based R.F. Taylor and J.S. Schultz. Technomic Pub. Co., Inc., Lancaster, PA, 1991.Google Scholar
  2. Clinical Applications of Monoclonal Antibodies.(Eds., R. Hubbard and V. Marks) Plenum Press, New York, 1988.Google Scholar
  3. Complementary Immunoassays(Ed., W.P. Collins) Wiley, New York, 1988.Google Scholar
  4. Defined Immunofluorescence and Related Cytochemical Methods(Eds., E.H. Beutner, R.J. Nisengard, and B. Albini) Annals of the New York Academy of Sciences, vol. 420, New York, 1983.Google Scholar
  5. Enzyme-Immunoassay(Ed., E.T. Maggio) CRC Press, Boca Raton, 1981.Google Scholar
  6. Immunoassay: A Practical Guide(Eds., D.W. Chan and M.T. Perlstein) Academic Press, Boston, 1987.Google Scholar
  7. Immunoassays: Clinical Techniques for the 1980’s(Eds., R.M. Nakamura, W.R. Dito, and E.S. Tucker) Liss, New York, 1980.Google Scholar
  8. Immunology. by I.M. Roitt, J. Brostoff, and D.K. Male. Gower, New York, 1989.Google Scholar
  9. Microparticle Immunoassay Techniques. by R.J. Galloway. Seradyn, Inc., Indianapolis, IN, 1988.Google Scholar
  10. Microspheres and Drug TherapyPharmaceutical, Immunological and Medical Aspects. (Eds., S.S. Davis, J.G. McVie, and E. Tomlinson) Elsevier, Amsterdam, 1984.Google Scholar
  11. Monoclonal Antibodies for Cancer Detection and Therapy(Eds., R.W. Baldwin and V.S. Byers) Academic Press, New York, 1985.Google Scholar
  12. Monoclonal Antibodies in Cancer(Eds., S. Sell and R. Reisfeld) Humana Press, Clifton, NJ, 1985.Google Scholar
  13. Protein Adsorption(Ed., J.D. Andrade) Plenum Press, New York, 1986.Google Scholar
  14. Synthetic Peptides as Antigens(Eds., R. Porter and J. Whelan) Ciba Foundation Symposium(vol. 119), Wiley, New York, 1986.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael G. Pappas
    • 1
  1. 1.Advanced Instruments Inc.NorwoodUSA

Personalised recommendations