Skip to main content

Slow Potentials During Long-Term Memory Retrieval

  • Chapter
Cognitive Electrophysiology

Abstract

Almost half a century ago, Karl Lashley summarized his decade-long effort on the localization of the engram with the following, somewhat pessimistic statement: “it is not possible to demonstrate the isolated localization of a memory trace anywhere in the nervous system. Limited regions may be essential for learning or retention of a particular activity, but . . . the engram is represented throughout the region” (Lashley, 1950). As far as neocortical structures are concerned, this position seems to be still valid. Neither experimentally induced lesions in animals nor those which occur naturally in human subjects support the idea that specific mnemonic contents can be narrowly localized anywhere in the cortex. A localization of memory functions could be established only insofar as that specific anatomic structures were found to be essential for the process of storage and retrieval but not for the engram itself. Moreover and surprisingly, these structures, which may be seen as relay stations within larger functional circuits, are for the most part not localized in the neocortex but in more ancient regions of the brain, for example, in the diencephalon, the basal forebrain, the hippocampus or the amygdalae (see, for example, the summarizing theories of (Mishkin and Appenzeller, 1987, or Markowitsch, 1985)). How these relay stations communicate with neocortical regions during storage and retrieval and where in the neocortex specific memory contents are held are still open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JR (1974): Retrieval of propositional information from long-term memory. Cognit Psychol 6:451–474.

    Article  Google Scholar 

  • Anderson JR, Bower GH (1973): Human associative memory. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Birbaumer N, Elbert T, Canavan AGM, Rockstroh B (1990): Slow potentials of the cerebral cortex and behavior. Physiol Rev 70:1–41.

    PubMed  CAS  Google Scholar 

  • Brunia CHM, Damen EJP (1988): Distribution of slow potentials related to motor preparation and stimulus anticipation in a time estimation task. J. Electroen-cephalogr Clin Neurophysiol 69:234–243.

    Article  CAS  Google Scholar 

  • Creutzfeldt OD (1983): Cortex Cerebri: Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Berlin: Springer.

    Google Scholar 

  • Deecke L, Uhl F, Spieth F, Lang W, Lang M (1987): Cerebral potentials preceding and accompanying verbal and spatial tasks. In: EEG Suppl, vol. 40: Current Trends in Event-Related Potential Research, Johnson RJ, Rohrbaugh JW, Parasuraman R, eds., pp. 17–23. Amsterdam: Elsevier.

    Google Scholar 

  • Delisle M, Stuss DT, Picton TW (1986): Event-related potentials to feedback in a concept-formation task. In: Electroencephalography and Clinical Neurophysiology, Suppl. 38: Cerebral Psychophysiology: Studies in Event-Related Potentials, McCallum WC, Zappoli R, Denoth F, eds., pp. 103–105. Amsterdam: Elsevier.

    Google Scholar 

  • Elbert T, Rockstroh B (1987): Threshold regulation—a key to the understanding of the combined dynamics of EEG and event-related potentials. J Psychophysiol 4:317–333.

    Google Scholar 

  • Farah MJ, Peronnet F (1989): Event-related potentials in the study of mental imagery. J Psychophysiol 3:99–109.

    Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1983): A new method for off-line removal of ocular artefact. EEG J 55:468–484.

    CAS  Google Scholar 

  • Grünewald G, Grünewald-Zuberbier E, Hömberg V, Schuhmacher H (1984): Hemispheric asymmetry of feedback-related slow negative potential shifts in a positioning movement task. In: Annals of the New York Academy of Sciences, 425: Brain and Information: Event-related potentials, Karrer R, Cohen J, Tueting P, eds., pp. 470–476. New York: The New York Academy of Sciences.

    Google Scholar 

  • Haider M, Groll-Knapp E, Ganglberger JA (1981): Event-related slow (DC) potentials in the human brain. Rev Psychol, Biochem & Pharmacol 88:126–197.

    Google Scholar 

  • Hansen JC, Hillyard SA (1983): Selective attention to multidimensional auditory stimuli. J Exp Psychol: Hum Percept Perform 9:1–19.

    Article  CAS  Google Scholar 

  • Heil M, Rösier F, Hennighausen E (1990): Slow brain potentials during retrieval of spatial and color representations from long-term memory. Psychophysiol 27:S38.

    Google Scholar 

  • Heil M, Rosier F, Hennighausen E (1993): Dynamics of activation in long-term memory: The retrieval of verbal, pictorial, and color information. J Exp Psychol Learn Mem Cognit.

    Google Scholar 

  • Hennighausen E, Heil M, Rösler F (1993): A simple method for correcting DC-drift artifacts. Electroencephalogr and Clin Neurophysiol (in press).

    Google Scholar 

  • Hillyard SA, Hansen JC (1986): Attention: Electrophysiological approaches. In: Psychophysiology: Systems, processes, and applications, Coles MGH, Donchin E, Porges SW, eds., pp. 227–243. Amsterdam: Elsevier.

    Google Scholar 

  • Horst RL, Ruchkin DS, Munson RC (1987): Event-related potential processing negativities related to workload. In: Current Trends in Event-Related Potential Research, EEG Suppl. ed., Johnson R, Rohrbaugh JW, Parasuraman R, eds., pp. 186–190. Amsterdam: Elsevier.

    Google Scholar 

  • Kornhuber HH, Deecke L (1965): Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotentiale und Reafferente Potentiale. Pflügers Archiv ges Physiol 284:1–17.

    Article  CAS  Google Scholar 

  • Kosslyn SM (1987): Seeing and imagining in the cerebral hemispheres: A computational approach. Psychol Rev 94:148–175.

    Article  PubMed  CAS  Google Scholar 

  • Lang M, Lang W, Uhl F, Kornhuber A, Deecke L, Kornhuber HH (1987): Slow negative potential shifts indicating verbal cognitive learning in a concept formation task. Hum Neurobiol 6:183–190.

    PubMed  CAS  Google Scholar 

  • Lang M, Lang W, Podreka I, Steiner M, Uhl F, Suess E, Müller C, Deecke L (1988): DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Exp Brain Res 71:353–364.

    PubMed  CAS  Google Scholar 

  • Lang W, Zilch O, Koska C, Lindinger G, Deecke L (1989): Negative cortical DC shifts preceding and accompanying simple and complex sequential movements. Experimental Brain Research 74:99–104.

    Article  CAS  Google Scholar 

  • Lashley KD (1950): In search of the engram. Symp Soc Exp Biol 4:454–482.

    Google Scholar 

  • Looren de Jong H, Kok A, van Rooy JCGM (1987): Electrophysiological indices of visual selection and memory search in young and old subjects. In: Current Trends in Event-Related Potential Research, EEG Suppl., Johnson R, Rohrbaugh JW, Parasuraman R, eds., pp. 341–349. Amsterdam: Elsevier.

    Google Scholar 

  • Markowitsch HJ (1985): Hypotheses on mnemonic information processing by the brain. Int J Neurosci 27:191–227.

    Article  PubMed  CAS  Google Scholar 

  • McCallum WC, Curry SH (eds) (1993): Proceedings of the NATO ARW on Slow Potential Changes of the Human Brain, NATO ASI Life Sciences Series. New York: Plenum.

    Google Scholar 

  • Meadows JC (1974): Disturbed perception of colors associated with localized cerebral lesions. Brain 97:615–632.

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Appenzeller T (1987): The anatomy of memory. Sci Am 256:80–89.

    Article  PubMed  CAS  Google Scholar 

  • Peronnet F, Farah MJ (1989): Mental rotation: An event-related potential study with a validated mental rotation task. Brain Cognit 9:279–288.

    Article  CAS  Google Scholar 

  • Reder LM, Anderson JR (1980): A partial resolution of the paradox of interference: The role of integrating knowledge. Cognit Psychol 12:447–472.

    Article  PubMed  CAS  Google Scholar 

  • Reder LM, Ross BH (1983): Integrated knowledge in different tasks: The role of retrieval strategy on fan effects. J Exp Psychol Learn Mem Cognit 9:55–72.

    Article  Google Scholar 

  • Risse GL, Rubens AB, Jordan LS (1984): Disturbances of long-term memory in aphasic patients. A comparison of anterior and posterior lesions. Brain 107:605–617.

    Article  PubMed  Google Scholar 

  • Rösler F, Heil M (1991): Toward a functional categorization of slow waves: taking into account past or future events? Psychophysiol 28:344–358.

    Article  Google Scholar 

  • Rösler F, Heil M, Glowalla U (1993): Memory retrieval from long-term memory by slow event-related brain potentials. Psychophysiol 30:170–182.

    Article  Google Scholar 

  • Rösler F, Heil M, Hennighausen E (1993): Distinct Cortical Activation Patterns During Long-Term Memory Retrieval of Verbal, Spatial, and Color Information (manuscript submitted).

    Google Scholar 

  • Rösler F, Schumacher G, Sojka B (1990): What the brain tells when it thinks. Event-related potentials during mental rotation and mental arithmetic. Germ J Psychol 14:185–203.

    Google Scholar 

  • Rohrbaugh JW, Gaillard AWK (1983): Sensory and motor aspects of the contingent negative variation. In: Tutorials in Event-Related Potential Research: Endogenous Components, Gaillard AWK, Ritter W, eds., pp. 269–310. Amsterdam: North Holland.

    Chapter  Google Scholar 

  • Ruchkin DS, Johnson R, Mahaffey D, Sutton S (1988): Toward a functional categorization of slow waves. Psychophysiol 25:339–353.

    Article  CAS  Google Scholar 

  • Speckmann EJ, Caspers H, Elger C (1984): Neuronal mechanisms underlying the generation of field potentials. In: Self-regulation of the Brain and Behavior, Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N, eds., pp. 9–25. Heidelberg: Springer.

    Chapter  Google Scholar 

  • Stuss DT, Leech EE, Sarazin FF, Picton TW (1984): Event-related potentials during naming. In: Annals of the New York Academy of Sciences, 425: Brain and Information: Event-related potentials, Karrer R, Cohen J, Tueting P, eds., pp. 278–282. New York: The New York Academy of Sciences.

    Google Scholar 

  • Stuss DT, Picton TW, Cerri AM (1986): Searching for the names of pictures: an event-related potential study. Psychophysiol 23:215–223.

    Article  CAS  Google Scholar 

  • Uhl F, Lang W, Lang M, Kornhuber A, Deecke L (1990): DC potential evidence for bilateral symmetrical frontal activation in non-verbal associative learning. J Psychophysiol 4:241–248.

    Google Scholar 

  • Walter WG, Cooper R, Aldridge V, McCallum WC, Winter AL (1964): Contingent negative variation: An electrical sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384.

    Article  PubMed  CAS  Google Scholar 

  • Wijers AA, Otten LJ, Feenstra S, Mulder G, Mulder LJM (1989): Brain potentials during selective attention, memory search, and mental rotation. Psychophysiol 26:452–467.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rösler, F., Heil, M., Hennighausen, E. (1994). Slow Potentials During Long-Term Memory Retrieval. In: Heinze, HJ., Münte, T.F., Mangun, G.R. (eds) Cognitive Electrophysiology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0283-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0283-7_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6693-8

  • Online ISBN: 978-1-4612-0283-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics