Advertisement

The Algebra of Chern—Simons Classes, the Poisson Bracket on it, and the Action of the Gauge Group

  • Israel M. Gelfand
  • Mikhail M. Smirnov
Part of the Progress in Mathematics book series (PM, volume 123)

Abstract

Developing ideas of formal geometry [Gl], [GKF], and ideas based on combinatorial formulas for characteristic classes, we introduce the algebraic structure that models the case of N connections given on the vector bundle over an oriented manifold. First we construct a graded free associative algebra A with a differential d. Then we go to the space V of cyclic words of A. Certain elements of V correspond to the secondary characteristic classes associated to k connections. That construction allows us to give easily the explicit formulas for some known secondary classes and to construct the new ones. The space V has new operations: it is a graded Lie algebra with respect to the Poisson bracket. There is an analogy between our algebra and the Kontsevich version of the noncommutative symplectic geometry. We consider then an algebraic model of the action of the gauge group. We describe how elements of our algebra corresponding to the secondary characteristic classes change under this action.

Keywords

Gauge Group Vector Bundle Gauge Transformation Poisson Bracket Vertex Operator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    R. Bott, On the Chern-Weil homomorphism and the continuous cohomology of Lie groups, Advances in Math. 11 (1973), 289–303.MathSciNetMATHCrossRefGoogle Scholar
  2. [BR]
    F. Beresin and V. Retakh, A method of computing characteristic classes of vector bundles, Reports on Mathematical Physics 18 (1980), 363–378.MathSciNetMATHCrossRefGoogle Scholar
  3. [BSS]
    R. Bott, H. Shulman, J. Stasheff, On the de Rham theory of certain classifying spaces, Advances in Math. 20 (1976), 43–56.MathSciNetMATHCrossRefGoogle Scholar
  4. [C]
    J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983), 575–657.MathSciNetMATHGoogle Scholar
  5. [CS]
    S.S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99 (1974), 48–69.MathSciNetMATHCrossRefGoogle Scholar
  6. [Du]
    J. Dupont, The Dilogarithm as a characteristic class of a flat bundle, J. Pure and Appl. Algebra 44 (1987), 137–164.MathSciNetMATHCrossRefGoogle Scholar
  7. [FZ]
    I.B. Frenkel and Y. Zhu, Vertex Operator Algebras Associated to Affine Lie Algebras, Duke Math. J. 66 (1992), 123MathSciNetMATHCrossRefGoogle Scholar
  8. [GFK]
    I.M. Gelfand, D.B. Fuks, and D.A. Kazhdan, The actions of infinite dimensional Lie algebras, Funct. Anal. Appl. 6 (1972), 9–13.MathSciNetCrossRefGoogle Scholar
  9. [GGL]
    A. Gabrielov, I.M. Gelfand, and M. Losik, Combinatorial calculation of characteristic class, Funktsional Anal, i Prilozhen. (Fund. Anal. Appl.) 9 no. 2, 12–28 no. 3, 5–26, (1975), 54–55.MathSciNetGoogle Scholar
  10. [GM]
    I.M. Gelfand and R. MacPherson, A combinatorial formula for the Pontrjagin classes, Bull AMS 26 no.2, 1992, 304–309.MathSciNetMATHCrossRefGoogle Scholar
  11. [GTs]
    I.M. Gelfand and B.L. Tsygan, On the localization of topological invariants, Comm. Math. Phys. 146 (1992), 73–90.MathSciNetMATHCrossRefGoogle Scholar
  12. [H]
    F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, Berlin, 1966.MATHCrossRefGoogle Scholar
  13. [KLV]
    I.S. Krasil’shchik, V.V. Lychagin, and A.M. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Gordon andBreach, NY 1986.MATHGoogle Scholar
  14. [Kon]
    M. Kontsevich, Formal (Non)-Commutative Symplectic Geometry, The Gelfand Mathematical Seminars 1990–92, L.Corwin, I.Gelfand, and J. Lepowsky, eds., 173–189, Birkhäuser, Boston 1993.Google Scholar
  15. [L]
    J.L. Loday, Cyclic homology, Springer, Berlin, 1992.MATHGoogle Scholar
  16. [LQ]
    J.L. Loday and D. Quillen, Cyclic homology and the Lie algebra of matrices, Topology 24 (1985), 89–95.MathSciNetGoogle Scholar
  17. [LZ1]
    B.H. Lian and G.J. Zuckerman, New Perspectives on the BRST-Algebraic Structure of String Theory, hep-th/9211072.Google Scholar
  18. [LZ2]
    B.H. Lian and G.J. Zuckerman, Some Classical and Quantum Algebras, Lie Theory and Geometry, Birkhäuser, 1994, this volume pp. 509–529Google Scholar
  19. [Ml]
    R. MacPherson, The combinatorial formula of Garielov, Gelfand, and Losik for the first Pontrjagin class, Séminaire Bourbaki No. 497, Lecture Notes in Math. 667, Springer, Heidelberg 1977.Google Scholar
  20. [M2]
    R. MacPherson, Combinatorial differential manifolds, in: Topological Methods in Modern Mathematics: A Symposium in Honor of John Milnor’s Sixtieth Birthday, Lisa R. Goldberg and Anthony V. Phillips, eds., Publish or Perish, Inc., Houston 1993.Google Scholar
  21. [MQ]
    V. Mathai and D Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25 (1986), 85–110.MathSciNetMATHCrossRefGoogle Scholar
  22. [O]
    Olver, P.J., Applications of Lie groups to the Partial Differential Equations, Springer, Berlin 1985.Google Scholar
  23. [P]
    L. Positselskii, Quadratic duality and curvature, Funct. Anal. Appl. 27 (1993), 197–204.MathSciNetCrossRefGoogle Scholar
  24. [Q]
    D. Quillen, Superconnections and the Chern character, Topology 24 no.l, 1985, 89–95.MathSciNetMATHCrossRefGoogle Scholar
  25. [Ts]
    Tsujishita, T., On variation bicomplex associated to differential equations, Osaka J. Math. 19 (1982), 311–363.MathSciNetMATHGoogle Scholar
  26. [You]
    B.V.Youssin, Sur les formes S p,q apparaissant dans le calcul combinatoire de la deuxième classe de Pontriaguine par la méthode de Gabrielov, Gel’fand et Losik, C.R. Acad. Sci. Paris, t.292, 641–644.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Israel M. Gelfand
    • 1
  • Mikhail M. Smirnov
    • 2
  1. 1.Mathematics DepartmentRutgers UniversityNew BrunswickUSA
  2. 2.Mathematics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations