Skip to main content

Familles cohérentes sur les groupes de Lie semi-simples et restriction aux sous-groupes compacts maximaux

  • Chapter
  • 1476 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

Let G be a semi-simple simply connected Lie group and K be a subgroup, maximal among the subgroups compact modulo the center. Invariant eigendistributions on G can be restricted to K. It is an irritating fact that, without supplementary assumptions, this restriction does not determine the distribution. However, we prove here that this is true if, instead of a single invariant eigendistribution, one considers a family of invariant eigendistributions, coherent in the sense of W. Schmid. We also study non connected semi-simple groups: we define a notion of coherent family of invariant eigendistributions and prove a unicity theorem in this setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah et R. Bott. A Lefschetz fixed-point formula for elliptic differential operators. Bull. Amer. Math. Soc., 72 (1966), 245–250.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Atiyah et R. Bott. A Lefschetz fixed-point formula for elliptic complexes: II. Ann. of Math., 88 (1968), 451–491.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Barbançon et M. Raïs. Sur le théorème de Hilbert différentiable pour les groupes linéaires finis (d’après E. Noether). Ann. Scient. Ec. Norm. Sup., 16 (1983), 355–373.

    MATH  Google Scholar 

  4. R. Bott. Homogeneous vector bundles. Annals of Math., 48 (1957), 203–248.

    Article  MathSciNet  Google Scholar 

  5. A. Bouaziz. Sur les caractères des groupes de Lie réductifs non connexes. J. of Functional Analysis, 70 (1987), 1–79.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Bourbaki. Groupes et algèbres de Lie, Chap. 4, 5 et 6. Masson, Paris, 1981.

    MATH  Google Scholar 

  7. M. Duflo et M. Vergne. Cohomologie équivariante et descente. Astérisque, 215 (1993), 5–108.

    MathSciNet  Google Scholar 

  8. M. Duflo et M. Vergne. Un théorème d’unicité pour les familles cohérentes sur les groupes semi-simples. C. R. Acad. Sci. Paris, 317 (1993), 1001–1006.

    MathSciNet  MATH  Google Scholar 

  9. M. Duflo, G. Heckman et M. Vergne. Projection d’orbites, formule de Kirillov et formule de Blattner. Mem. Soc. Math. Fr., 15 (1984), 65–128.

    MathSciNet  MATH  Google Scholar 

  10. Harish-Chandra. Differential operators on a semisimple Lie algebra. Amer. J. Math., 79 (1957), 87–120.

    Article  MathSciNet  MATH  Google Scholar 

  11. Harish-Chandra. Invariant eigendistributions on a semisimple Lie algebra. Inst. Hautes Etudes Sci. Publ. Math., 27 (1965), 5–54.

    Article  MathSciNet  MATH  Google Scholar 

  12. Harish-Chandra. Invariant Eigendistributions on a Semisimple Lie Group. Trans. Amer. Math. Soc., 119 (1965), 457–508.

    Article  MathSciNet  MATH  Google Scholar 

  13. Harish-Chandra. Discrete series for semi-simple Lie groups I. Acta Math., 113 (1965), 241–318.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hotta et M. Kashiwara. The Invariant Holonomic System in a Semisimple Lie Algebra. Inventiones Mathematicae, 75 (1984), 327–358.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Kostant. Lie algebra cohomology and the Borel-Weil theorem. Annals of Math., 74 (1961), 329–387.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Levasseur et J. T. Stafford. Invariant differential operators and an homomorphism of Harish-Chandra. Preprint 1993

    Google Scholar 

  17. W. Schmid. Two characters identities for semisimple Lie groups. Springer Lecture Notes in Math., 787 (1976), 196–225.

    Google Scholar 

  18. M. A. Semenov-Tian-Shansky. Harmonic analysis on symmetric spaces of nonpositive curvature and scattering theory. Sov. Math. Izv., 40 (1976), 562–592.

    MATH  Google Scholar 

  19. R. Steinberg. Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. 80, 1968.

    Google Scholar 

  20. V. S. Varadarajan. Harmonic analysis on real reductive groups. Springer Lecture Notes in Math. 576, 1977.

    Google Scholar 

  21. M. Vergne. Geometric quantization and equivariant cohomology. A paraître dans les proceedings du Congrès Européen, Paris 1992.

    Google Scholar 

  22. D. A. Vogan. Irreducible characters of semisimple Lie groups II. The Kazhdan-Lusztig conjectures. Duke Math. J., 46 (1979), 805–859.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. A. Vogan. Representations of real reductive Lie groups. Birkhäuser, Boston, 1981.

    MATH  Google Scholar 

  24. D. A. Vogan. Irreducibility of discrete series representations for semisimple symmetric spaces. Advanced Studies in Pure Math., 14 (1988), 191–221.

    MathSciNet  Google Scholar 

  25. N. R. Wallach. Real reductive groups I. Academic Press, New-York, 1988.

    MATH  Google Scholar 

  26. N. R. Wallach. Invariant differential operators on a reductive Lie algebra and Weyl group representations. Journal of the Amer. Math. Soc., 6 (1993), 779–816.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Zuckerman. Coherent translation of characters of semisimple Lie groups. Proceedings of the International Congress, Helsinki 1978, 721–724

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duflo, M., Vergne, M. (1994). Familles cohérentes sur les groupes de Lie semi-simples et restriction aux sous-groupes compacts maximaux. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics