Advertisement

Tensor Products of Modules for a Vertex Operator Algebra and Vertex Tensor Categories

  • Yi-Zhi Huang
  • James Lepowsky
Part of the Progress in Mathematics book series (PM, volume 123)

Abstract

In this paper, we present a theory of tensor products of classes of modules for a vertex operator algebra. We focus on motivating and explaining new structures and results in this theory, rather than on proofs, which are being presented in a series of papers beginning with [HL4] and [HL5]. An announcement has also appeared [HL1]. The theory is based on both the formal-calculus approach to vertex operator algebra theory developed in [FLM2] and [FHL] and the precise geometric interpretation of the notion of vertex operator algebra established in [H1].

Keywords

Tensor Product Vertex Operator Jacobi Identity Conformal Field Theory Vertex Operator Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BPZ]
    A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), 333–380.MathSciNetCrossRefGoogle Scholar
  2. [B1]
    R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.MathSciNetCrossRefGoogle Scholar
  3. [B2]
    R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent Math. 109 (1992), 405–444.MathSciNetMATHCrossRefGoogle Scholar
  4. [BNS]
    R. Brustein, Y. Ne’eman and S. Sternberg, Duality, crossing and Mac Lane’s coherence, Isr. J. Math. 72 (1990), 19–37.MathSciNetMATHCrossRefGoogle Scholar
  5. [CN]
    J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308–339.MathSciNetMATHCrossRefGoogle Scholar
  6. [Do]
    C. Dong, Representations of the moonshine module vertex operator algebra, in: Proc. 1992 Joint Summer Research Conference on Conformai Field Theory, Topological Field Theory and Quantum Groups, Mount Holyoke, 1992, Contemporary Math., Amer. Math. Soc., Providence, to appear.Google Scholar
  7. [DL]
    C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math., Vol. 112, Birkhäuser, Boston, 1993.MATHCrossRefGoogle Scholar
  8. [Dr1]
    V. Drinfeld, On quasi-cocommutative Hopf algebras, Algebra and Analysis 1 (1989), 30–46.MathSciNetGoogle Scholar
  9. [Dr2]
    V. Drinfeld, On quasitriangular quasi-Hopf algebras and a certain group closely related to Gal(<Inline>1</Inline>/ℚ), Algebra and Analysis 2 (1990), 149–181.MathSciNetGoogle Scholar
  10. [Fa]
    G. Faltings, A proof for the Verlinde formula, to appear.Google Scholar
  11. [Fi]
    M. Finkelberg, Fusion categories, Ph.D. thesis, Harvard University, 1993.Google Scholar
  12. [FHL]
    I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, preprint, 1989; Memoirs Amer. Math. Soc. 104, Number 494, 1993.MathSciNetGoogle Scholar
  13. [FLM1]
    I. B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function J as character, Proc. Natl. Acad. Sci. USA 81 (1984), 3256–3260.MathSciNetMATHCrossRefGoogle Scholar
  14. [FLM2]
    I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.MATHGoogle Scholar
  15. [FZ]
    I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123–168.MathSciNetMATHCrossRefGoogle Scholar
  16. [FS]
    D. Friedan and S. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B281 (1987), 509–545.MathSciNetCrossRefGoogle Scholar
  17. [Go]
    D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Plenum Press, New York, 1982.MATHGoogle Scholar
  18. [Gr]
    R. L. Griess, Jr., The Friendly Giant, Invent. Math. 69 (1982), 1–102.MathSciNetMATHCrossRefGoogle Scholar
  19. [H1]
    Y.-Z. Huang, On the geometric interpretation of vertex operator algebras, Ph.D. thesis, Rutgers University, 1990; Operads and the geometric interpretation of vertex operator algebras, I, to appear.Google Scholar
  20. [H2]
    Y.-Z. Huang, Geometric interpretation of vertex operator algebras, Proc. Natl. Acad. Sci. USA 88 (1991), 9964–9968.MATHCrossRefGoogle Scholar
  21. [H3]
    Y.-Z. Huang, Applications of the geometric interpretation of vertex operator algebras, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 333–343.Google Scholar
  22. [H4]
    Y.-Z. Huang, Vertex operator algebras and conformal field theory, Intl. J. Mod. Phys. A7 (1992), 2109–2151.CrossRefGoogle Scholar
  23. [H5]
    Y.-Z. Huang, Operads and the geometric interpretation of vertex operator algebras, II, in preparation.Google Scholar
  24. [HL1]
    Y.-Z. Huang and J. Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 344–354.Google Scholar
  25. [HL2]
    Y.-Z. Huang and J. Lepowsky, Vertex operator algebras and operads, in: The Gelfand Mathematical Seminars, 1990–1992, ed. L. Corwin, I. Gelfand and J. Lepowsky, Birkhäuser, Boston, 1993, 145–161.CrossRefGoogle Scholar
  26. [HL3]
    Y.-Z. Huang and J. Lepowsky, Operadic formulation of the notion of vertex operator algebra, in: Proc. 1992 Joint Summer Research Conference on Conformal Field Theory, Topological Field Theory and Quantum Groups, Mount Holyoke, 1992, Contemporary Math., Amer. Math. Soc, Providence, to appear.Google Scholar
  27. [HL4]
    Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, I, to appear.Google Scholar
  28. [HL5]
    Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, II, to appear.Google Scholar
  29. [J]
    V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335–388.MATHCrossRefGoogle Scholar
  30. [JS1]
    A. Joyal and R. Street, Braided monoidal categories, Macquarie Mathematics Reports, Macquarie University, Australia, 1986.Google Scholar
  31. [JS2]
    A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups, in: Category theory, Como, 1990, ed. A. Carboni, M.C. Pedicchio and G. Rosolini, Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, 413–492.Google Scholar
  32. [KL1]
    D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, International Mathematics Research Notices (in Duke Math. J.) 2 (1991), 21–29.MathSciNetCrossRefGoogle Scholar
  33. [KL2]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993), 905–947.MathSciNetMATHCrossRefGoogle Scholar
  34. [KL3]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, II, J. Amer. Math. Soc. 6 (1993), 949–1011.MathSciNetCrossRefGoogle Scholar
  35. [KL4]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, III, J. Amer. Math. Soc. 7 (1994), 335–381.MathSciNetMATHCrossRefGoogle Scholar
  36. [KL5]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, IV, J. Amer. Math. Soc. 7 (1994), 383–453.MathSciNetMATHCrossRefGoogle Scholar
  37. [KZ]
    V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino models in two dimensions, Nucl. Phys. B247 (1984), 83–103.MathSciNetCrossRefGoogle Scholar
  38. [K1]
    T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, in: Braids, Santa Cruz, 1986, Contemporary Math. 78 (1988), 339–363.Google Scholar
  39. [K2]
    T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 (1987), 139–160.MathSciNetMATHCrossRefGoogle Scholar
  40. [L1]
    J. Lepowsky, Perspectives on vertex operators and the Monster, in: Proc. 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ., Proc. Symp. Pure Math., Amer. Math. Soc. 48 (1988), 181–197.Google Scholar
  41. [L2]
    J. Lepowsky, Remarks on vertex operator algebras and moonshine, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 362–370.Google Scholar
  42. [LW]
    J. Lepowsky and R.L. Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Natl. Acad. Sci. USA 78 (1981), 7254–7258.MathSciNetMATHCrossRefGoogle Scholar
  43. [ML]
    S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math., Vol. 5, Springer-Verlag, New York, 1971.MATHCrossRefGoogle Scholar
  44. [MN]
    G. Mason, Finite groups and modular functions (with an appendix by S. P. Norton), in: Representations of Finite Groups, Proc. 1986 Summer Research Institute, Areata, ed. P. Fong, Proc. Symp. Pure Math., Amer. Math. Soc. 47 (1987), 181–210.Google Scholar
  45. [M]
    J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer-Verlag, 1972.Google Scholar
  46. [MS]
    G. Moore and N. Seiberg, Classical and quantum Conformal field theory, Comm. Math. Phys. 123 (1989), 177–254.MathSciNetMATHCrossRefGoogle Scholar
  47. [RT]
    N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547–597.MathSciNetMATHCrossRefGoogle Scholar
  48. [SV]
    V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent Math. 106 (1991), 139–194.MathSciNetMATHCrossRefGoogle Scholar
  49. [S1]
    J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275–292.MathSciNetMATHCrossRefGoogle Scholar
  50. [S2]
    J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc. 108 (1963), 293–312.MathSciNetGoogle Scholar
  51. [TK]
    A. Tsuchiya and Y. Kanie, Vertex operators in Conformal field theory on ℙ1 and monodromy representations of braid group, in: Conformal Field Theory and Solvable Lattice Models, Advanced Studies in Pure Math., Vol. 16, Kinokuniya Company Ltd., Tokyo, 1988, 297–372.Google Scholar
  52. [TUY]
    A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, in: Advanced Studies in Pure Math., Vol. 19, Kinokuniya Company Ltd., Tokyo, 1989, 459–565.Google Scholar
  53. [Va]
    A. N. Varchenko, Hypergeometric functions and representation theory of Lie algebras and quantum groups, to appear.Google Scholar
  54. [Ve]
    E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B300 (1988), 360–376.MathSciNetCrossRefGoogle Scholar
  55. [Wa]
    W. Wang, Rationality of Virasoro vertex operator algebras, International Mathematics Research Notices (in Duke Math. J.) 7 (1993), 197–211.CrossRefGoogle Scholar
  56. [Wi1]
    E. Witten, Non-abelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984), 455–472.MathSciNetMATHCrossRefGoogle Scholar
  57. [Wi2]
    E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351–399MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Yi-Zhi Huang
    • 1
  • James Lepowsky
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations