Tensor Products of Modules for a Vertex Operator Algebra and Vertex Tensor Categories

  • Yi-Zhi Huang
  • James Lepowsky
Part of the Progress in Mathematics book series (PM, volume 123)

Abstract

In this paper, we present a theory of tensor products of classes of modules for a vertex operator algebra. We focus on motivating and explaining new structures and results in this theory, rather than on proofs, which are being presented in a series of papers beginning with [HL4] and [HL5]. An announcement has also appeared [HL1]. The theory is based on both the formal-calculus approach to vertex operator algebra theory developed in [FLM2] and [FHL] and the precise geometric interpretation of the notion of vertex operator algebra established in [H1].

Keywords

Coherence Dition Univer Como E211 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BPZ]
    A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B241 (1984), 333–380.MathSciNetCrossRefGoogle Scholar
  2. [B1]
    R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068–3071.MathSciNetCrossRefGoogle Scholar
  3. [B2]
    R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent Math. 109 (1992), 405–444.MathSciNetMATHCrossRefGoogle Scholar
  4. [BNS]
    R. Brustein, Y. Ne’eman and S. Sternberg, Duality, crossing and Mac Lane’s coherence, Isr. J. Math. 72 (1990), 19–37.MathSciNetMATHCrossRefGoogle Scholar
  5. [CN]
    J. H. Conway and S. P. Norton, Monstrous moonshine, Bull. London Math. Soc. 11 (1979), 308–339.MathSciNetMATHCrossRefGoogle Scholar
  6. [Do]
    C. Dong, Representations of the moonshine module vertex operator algebra, in: Proc. 1992 Joint Summer Research Conference on Conformai Field Theory, Topological Field Theory and Quantum Groups, Mount Holyoke, 1992, Contemporary Math., Amer. Math. Soc., Providence, to appear.Google Scholar
  7. [DL]
    C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math., Vol. 112, Birkhäuser, Boston, 1993.MATHCrossRefGoogle Scholar
  8. [Dr1]
    V. Drinfeld, On quasi-cocommutative Hopf algebras, Algebra and Analysis 1 (1989), 30–46.MathSciNetGoogle Scholar
  9. [Dr2]
    V. Drinfeld, On quasitriangular quasi-Hopf algebras and a certain group closely related to Gal(<Inline>1</Inline>/ℚ), Algebra and Analysis 2 (1990), 149–181.MathSciNetGoogle Scholar
  10. [Fa]
    G. Faltings, A proof for the Verlinde formula, to appear.Google Scholar
  11. [Fi]
    M. Finkelberg, Fusion categories, Ph.D. thesis, Harvard University, 1993.Google Scholar
  12. [FHL]
    I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, preprint, 1989; Memoirs Amer. Math. Soc. 104, Number 494, 1993.MathSciNetGoogle Scholar
  13. [FLM1]
    I. B. Frenkel, J. Lepowsky and A. Meurman, A natural representation of the Fischer-Griess Monster with the modular function J as character, Proc. Natl. Acad. Sci. USA 81 (1984), 3256–3260.MathSciNetMATHCrossRefGoogle Scholar
  14. [FLM2]
    I. B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988.MATHGoogle Scholar
  15. [FZ]
    I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123–168.MathSciNetMATHCrossRefGoogle Scholar
  16. [FS]
    D. Friedan and S. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B281 (1987), 509–545.MathSciNetCrossRefGoogle Scholar
  17. [Go]
    D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Plenum Press, New York, 1982.MATHGoogle Scholar
  18. [Gr]
    R. L. Griess, Jr., The Friendly Giant, Invent. Math. 69 (1982), 1–102.MathSciNetMATHCrossRefGoogle Scholar
  19. [H1]
    Y.-Z. Huang, On the geometric interpretation of vertex operator algebras, Ph.D. thesis, Rutgers University, 1990; Operads and the geometric interpretation of vertex operator algebras, I, to appear.Google Scholar
  20. [H2]
    Y.-Z. Huang, Geometric interpretation of vertex operator algebras, Proc. Natl. Acad. Sci. USA 88 (1991), 9964–9968.MATHCrossRefGoogle Scholar
  21. [H3]
    Y.-Z. Huang, Applications of the geometric interpretation of vertex operator algebras, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 333–343.Google Scholar
  22. [H4]
    Y.-Z. Huang, Vertex operator algebras and conformal field theory, Intl. J. Mod. Phys. A7 (1992), 2109–2151.CrossRefGoogle Scholar
  23. [H5]
    Y.-Z. Huang, Operads and the geometric interpretation of vertex operator algebras, II, in preparation.Google Scholar
  24. [HL1]
    Y.-Z. Huang and J. Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 344–354.Google Scholar
  25. [HL2]
    Y.-Z. Huang and J. Lepowsky, Vertex operator algebras and operads, in: The Gelfand Mathematical Seminars, 1990–1992, ed. L. Corwin, I. Gelfand and J. Lepowsky, Birkhäuser, Boston, 1993, 145–161.CrossRefGoogle Scholar
  26. [HL3]
    Y.-Z. Huang and J. Lepowsky, Operadic formulation of the notion of vertex operator algebra, in: Proc. 1992 Joint Summer Research Conference on Conformal Field Theory, Topological Field Theory and Quantum Groups, Mount Holyoke, 1992, Contemporary Math., Amer. Math. Soc, Providence, to appear.Google Scholar
  27. [HL4]
    Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, I, to appear.Google Scholar
  28. [HL5]
    Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, II, to appear.Google Scholar
  29. [J]
    V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335–388.MATHCrossRefGoogle Scholar
  30. [JS1]
    A. Joyal and R. Street, Braided monoidal categories, Macquarie Mathematics Reports, Macquarie University, Australia, 1986.Google Scholar
  31. [JS2]
    A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups, in: Category theory, Como, 1990, ed. A. Carboni, M.C. Pedicchio and G. Rosolini, Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, 413–492.Google Scholar
  32. [KL1]
    D. Kazhdan and G. Lusztig, Affine Lie algebras and quantum groups, International Mathematics Research Notices (in Duke Math. J.) 2 (1991), 21–29.MathSciNetCrossRefGoogle Scholar
  33. [KL2]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math. Soc. 6 (1993), 905–947.MathSciNetMATHCrossRefGoogle Scholar
  34. [KL3]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, II, J. Amer. Math. Soc. 6 (1993), 949–1011.MathSciNetCrossRefGoogle Scholar
  35. [KL4]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, III, J. Amer. Math. Soc. 7 (1994), 335–381.MathSciNetMATHCrossRefGoogle Scholar
  36. [KL5]
    D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras, IV, J. Amer. Math. Soc. 7 (1994), 383–453.MathSciNetMATHCrossRefGoogle Scholar
  37. [KZ]
    V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino models in two dimensions, Nucl. Phys. B247 (1984), 83–103.MathSciNetCrossRefGoogle Scholar
  38. [K1]
    T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, in: Braids, Santa Cruz, 1986, Contemporary Math. 78 (1988), 339–363.Google Scholar
  39. [K2]
    T. Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier 37 (1987), 139–160.MathSciNetMATHCrossRefGoogle Scholar
  40. [L1]
    J. Lepowsky, Perspectives on vertex operators and the Monster, in: Proc. 1987 Symposium on the Mathematical Heritage of Hermann Weyl, Duke Univ., Proc. Symp. Pure Math., Amer. Math. Soc. 48 (1988), 181–197.Google Scholar
  41. [L2]
    J. Lepowsky, Remarks on vertex operator algebras and moonshine, in: Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol. 1, 362–370.Google Scholar
  42. [LW]
    J. Lepowsky and R.L. Wilson, A new family of algebras underlying the Rogers-Ramanujan identities and generalizations, Proc. Natl. Acad. Sci. USA 78 (1981), 7254–7258.MathSciNetMATHCrossRefGoogle Scholar
  43. [ML]
    S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math., Vol. 5, Springer-Verlag, New York, 1971.MATHCrossRefGoogle Scholar
  44. [MN]
    G. Mason, Finite groups and modular functions (with an appendix by S. P. Norton), in: Representations of Finite Groups, Proc. 1986 Summer Research Institute, Areata, ed. P. Fong, Proc. Symp. Pure Math., Amer. Math. Soc. 47 (1987), 181–210.Google Scholar
  45. [M]
    J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer-Verlag, 1972.Google Scholar
  46. [MS]
    G. Moore and N. Seiberg, Classical and quantum Conformal field theory, Comm. Math. Phys. 123 (1989), 177–254.MathSciNetMATHCrossRefGoogle Scholar
  47. [RT]
    N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547–597.MathSciNetMATHCrossRefGoogle Scholar
  48. [SV]
    V. V. Schechtman and A. N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent Math. 106 (1991), 139–194.MathSciNetMATHCrossRefGoogle Scholar
  49. [S1]
    J. D. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963), 275–292.MathSciNetMATHCrossRefGoogle Scholar
  50. [S2]
    J. D. Stasheff, Homotopy associativity of H-spaces, II, Trans. Amer. Math. Soc. 108 (1963), 293–312.MathSciNetGoogle Scholar
  51. [TK]
    A. Tsuchiya and Y. Kanie, Vertex operators in Conformal field theory on ℙ1 and monodromy representations of braid group, in: Conformal Field Theory and Solvable Lattice Models, Advanced Studies in Pure Math., Vol. 16, Kinokuniya Company Ltd., Tokyo, 1988, 297–372.Google Scholar
  52. [TUY]
    A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, in: Advanced Studies in Pure Math., Vol. 19, Kinokuniya Company Ltd., Tokyo, 1989, 459–565.Google Scholar
  53. [Va]
    A. N. Varchenko, Hypergeometric functions and representation theory of Lie algebras and quantum groups, to appear.Google Scholar
  54. [Ve]
    E. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B300 (1988), 360–376.MathSciNetCrossRefGoogle Scholar
  55. [Wa]
    W. Wang, Rationality of Virasoro vertex operator algebras, International Mathematics Research Notices (in Duke Math. J.) 7 (1993), 197–211.CrossRefGoogle Scholar
  56. [Wi1]
    E. Witten, Non-abelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984), 455–472.MathSciNetMATHCrossRefGoogle Scholar
  57. [Wi2]
    E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351–399MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Yi-Zhi Huang
    • 1
  • James Lepowsky
    • 2
  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations