Skip to main content

Capture PCR: An Efficient Method for Walking Along Chromosomal DNA and cDNA

  • Chapter
The Polymerase Chain Reaction

Abstract

The polymerase chain reaction (PCR) is an enzymatic process that allows the generation of millions of identical DNA molecules in vitro in a few hours, starting with as little as one copy of DNA (Mullis et al., 1986; Mullis and Faloona, 1987; Saiki et al., 1988). In contrast to conventional cloning, this in vitro amplification process is quick, efficient, and can easily be automated. In addition to its enormous potential for clinical diagnosis PCR has found numerous applications in all fields of biology and medicine (Innis et al., 1990; Erlich, 1989; Erlich etal., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arveiler B, Porteous DJ (1991): Amplification of end fragments of YAC recombinants by inverse-polymerase chain reaction. Technique 3:24–28.

    CAS  Google Scholar 

  • Borson ND, Salo WL, Drewes LR (1992): A lock-docking oligo(dT) primer for 5′ and 3′ RACE PCR. PCR Methods Applic 2:144–148.

    Article  CAS  Google Scholar 

  • Charnock-Jones DS, Platzer M, Rosenthal A (1993): Extension of incomplete cDNAs (EST’s) by biotin/streptavidin mediated walking using the polymerase chain reaction. J Biotechnol, in press.

    Google Scholar 

  • Copley CG, Boot C, Bundell K, McPheat WL (1991): Unknown sequence amplification: Application to in vitro genome walking in Chlamydia trachomatis L2. Bio/Technology 9:74–79.

    Article  PubMed  CAS  Google Scholar 

  • Dumas JB, Edwards M, Delort J, Mallet J (1991): Oligodeoxyribonucleotide ligation to single-stranded cDNA’s: A new tool for cloning 5′ ends of mRNA and for constructing cDNA libraries by in vitro amplification. Nucl Acids Res 19:5227–5232.

    Article  Google Scholar 

  • Earp DJ, Lowe B, Baker B (1990): Amplification of genomic sequences flanking transposable elements in host and heterologous plants: A tool for transposon tagging and genome characterization. Nucl Acids Res 18:3271–3279.

    Article  PubMed  CAS  Google Scholar 

  • Erlich HA (ed) (1989): PCR Technology — Principles and Applications for DNA Amplification. New York: Stockton Press.

    Google Scholar 

  • Erlich HA, Gelfand D, Sninsky JJ (1991): Recent advantages in the polymerase chain reaction. Science 252:1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Espelund M, Jakobsen KS (1992): Cloning and direct sequencing of plant promotors using primer-adapter mediated PCR on DNA coupled to a magnetic solid phase. BioTechniques 13:74–81.

    PubMed  CAS  Google Scholar 

  • Fors L, Saavedra RA, Hood L (1990): Cloning of the shark Po promotor using a genomic walking technique based on the polymerase chain reaction. Nucl Acids Res 18:2793–2799.

    Article  PubMed  CAS  Google Scholar 

  • Fritz JD, Greaser ML, Wolff JA (1991): A novel 3′ extension technique using random primers in RNA-PCR. Nucl Acids Res 19:3747.

    Article  PubMed  CAS  Google Scholar 

  • Frohman MA (1990): RACE: Rapid amplification of cDNA ends. In: PCR Protocols — A Guide to Methods and Applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. San Diego: Academic Press.

    Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988): Rapid production of full-length cDNA from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002.

    Article  PubMed  CAS  Google Scholar 

  • Garrity PA, Wold BJ (1992): Effects of different DNA polymerases in ligation-mediated PCR: Enhanced genomic sequencing and in vivo footprinting. Proc Natl Acad Sci USA 89:1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Huckaby CS, Kouri RE, Lane MJ, Peshick SM, Carroll WT, Henderson SM, Faldasz BD, Waterbury PG, Vournakis JN (1991): An efficient technique for obtaining sequences flanking inserted retroviruses. GATA 8:151–158.

    CAS  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) (1990): PCR Protocols — A Guide to Methods and Applications. San Diego: Academic Press.

    Google Scholar 

  • Jain R, Gomer RH, Murtagh JJ (1992): Increasing specificity from PCR-RACE technique. BioTechniques 12:58–59.

    PubMed  CAS  Google Scholar 

  • Jones D, Winistorfer SC (1992): Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucl Acids Res 20:595–600.

    Article  PubMed  CAS  Google Scholar 

  • Jones DH, Winistorfer SC (1993): Genome walking with 2- to 4-kb steps using panhandle PCR. PCR Methods Applic 2:197–203.

    Article  CAS  Google Scholar 

  • Kalman M, Kalman ET, Cashel M (1990): Polymerase chain reaction (PCR) amplification with a single specific primer. Biochem Biophys Res Commun 167:504–506.

    Article  PubMed  CAS  Google Scholar 

  • Lagerström M, Parik J, Malmgren H, Stewart J, Petterson U, Landegren U (1991): Capture PCR: Efficient amplification of DNA fragments adjacent to known sequences in human and YAC DNA. PCR Methods Applic 1:111–119.

    Article  Google Scholar 

  • Mueller PR, Wold B (1989): In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786.

    Article  PubMed  CAS  Google Scholar 

  • Mueller PR, Wold B (1991): Ligation-mediated PCR: Applications to genomic footprinting. Methods: Companion Methods Enzymol 2:20–31.

    Article  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987): Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol 155:335–350.

    Article  PubMed  CAS  Google Scholar 

  • Mullis KB, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich HA (1986): Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273.

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988): Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623.

    PubMed  CAS  Google Scholar 

  • Ochman H, Medhora MM, Garza D, Hartl DL (1990): Amplifications of flanking sequences by inverse PCR. In: PCR Protocols — A Guide to Methods and Applications. Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. San Diego: Academic Press.

    Google Scholar 

  • Palittapongarnpim P, Chomyc S, Fanning A, Kunimoto D (1993): DNA fingerprinting of Mycobacterium tuberculosis isolates by ligation-mediated polymerase chain reaction. Nucl Acids Res 21: 761–762.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer GP (1992): Analysis of chromatin structure by ligation-mediated PCR. PCR Methods Applic 2:107–111.

    Article  CAS  Google Scholar 

  • Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD (1989): Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246:810–813.

    Article  PubMed  CAS  Google Scholar 

  • Riley J, Butler R, Ogilvie D, Finniear R, Jenner D, Powell S, Anand R, Smith JC, Markham AF (1990): A novel, rapid method for the isolation of terminal sequence from yeast artificial chromosome (YAC) clones. Nucl Acids Res 18:2887–2890.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A (1992): PCR amplification techniques for chromosome walking. Trends Biotechnol 10:44–48.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A, Jones DSC (1990): Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucl Acids Res 18:3095–3096.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A, MacKinnon RN, Jones DSC (1991): PCR walking from microdissection clone M54 identifies three exons from the human gene for the neural cell adhesion molecule LI (CAM-LI). Nucl Acids Res 19:5395–5401.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A, Charnock-Jones DS (1992): New protocols for DNA sequencing with dye terminators. DNA Sequence — DNA Sequencing Mapping 3:61–64.

    CAS  Google Scholar 

  • Rosenthal A, Coutelle O, Craxton M (1993): Large-scale production of DNA sequencing templates by microtitre format PCR. Nucl Acids Res 21: 173–174.

    Article  PubMed  CAS  Google Scholar 

  • Roux KH, Dhanarajan P (1990): A strategy for single site PCR amplification of ds DNA: Priming digested cloned or genomic DNA from an anchor-modified restriction site and a short internal sequence. BioTechniques 8:48–57.

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988): Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar G, Turner RT, Bolander ME (1993): Restriction-site PCR: A direct method of unknown sequence retrieval adjacent to a known locus by using universal primers. PCR Methods Applic 2:318–322.

    Article  CAS  Google Scholar 

  • Shyamala V, Ames FL (1989): Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene 84:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Silverman GA, Ye RD, Pollock KM, Sadler JE, Korsmeyer S J (1989): Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc Natl Acad Sci USA 86:7485–7489.

    Article  PubMed  CAS  Google Scholar 

  • Sikela JM, Auffray C (1993): Finding new genes faster than ever. Nature Genet 3:189–191.

    Article  PubMed  CAS  Google Scholar 

  • Törmänen YT, Swiderski PM, Kaplan BE, Pfeifer GP, Riggs AD (1992): Extension product capture improves genomic sequencing and DNase I footprinting by ligation-mediated PCR. Nucl Acids Res 20:5487–5488.

    Article  PubMed  Google Scholar 

  • Triglia T, Peterson MG, Kemp DJ (1988): A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucl Acids Res 16:8186.

    Article  PubMed  CAS  Google Scholar 

  • Verhasselt P, Voet M, Volckaert G (1992): DNA sequencing by a subcloning-walking strategy using a specific and a semi-random primer in the polymerase chain reaction. DNA Sequence 2: 281–287.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosenthal, A., Platzer, M., Charnock-Jones, D.S. (1994). Capture PCR: An Efficient Method for Walking Along Chromosomal DNA and cDNA. In: Mullis, K.B., Ferré, F., Gibbs, R.A. (eds) The Polymerase Chain Reaction. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0257-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0257-8_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3750-7

  • Online ISBN: 978-1-4612-0257-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics