Skip to main content

A Gelfand-Naimark Theorem for C*-Algebras

  • Conference paper
Algebraic Methods in Operator Theory

Abstract

Since the memorial work by I.M. Gelfand and M.A. Naimark [22], there have been various attempts to generalize the beautiful representation theorem for non-commutative C*-algebras (see e.g. [12] and its bibliography). Among them, one notable direction was the approach from the convexity theory, initiated by R.V. Kadison finding a functional representation of a C*-algebra on the w*- closure of the pure states as an order isomorphism in the context of Kadison’s function representation theorem (cf. [23]). This motivated the abstract Dirichlet problem for the extreme boundary of compact convex sets (cf. [2, 3]), and the duality arguments on the pure states for C*-algebras by F.W. Shultz [28] in the context of Alfsen-Shultz theory, which was further developed in C.A. Akemann and F.W. Shultz [1] based on Takesaki’s duality theorem (cf. [8], [30]). Another important approach was initiated by J.M.G. Fell [14] using the fiber bundle theory, and culminated in the Dauns-Hofmann theorem [11] (cf. also [13]), where they showed that every C*-algebra is *-isomorphic to the C*-algebra of all continuous sections of a C*-bundle over the spectrum of the center of its multiplier algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Akemann and F.W. Shultz, Perfect C*-algebras, Memoirs Amer. Math. Soc. 326 (1985).

    Google Scholar 

  2. E.M. Alfsen, On the Dirichlet problem of the Choquet boundary., Acta Math. 120 (1968), 149–159.

    Article  MathSciNet  MATH  Google Scholar 

  3. E.M. Alfsen, Compact convex sets and boundary integrals, Springer Verlag, Berlin-Heidelberg-New York, 1971.

    Book  MATH  Google Scholar 

  4. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, No. 286, Springer-Verlag, Berlin-Heidelberg, 1987.

    Google Scholar 

  5. W.B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141–224.

    Article  MathSciNet  MATH  Google Scholar 

  6. W.B. Arveson, Subalgebras of C*-algebras II, Acta Math. 128 (1972), 271–308.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.J.K. Batty, Semi-perfect C*-algebras and the Stone-Weierstrass problem, J. London Math. Soc. (2) 34 (1986), 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Bichteler, A generalization to the non-separable case of Takesaki’s duality theorem for C*-algebras, Inventiones Math. 9 (1969), 89–98.

    Article  MathSciNet  MATH  Google Scholar 

  9. L.G. Brown, Complements to various Stone-Weierstrass theorems for C*-algebras and a theorem of Shultz, Commun. Math. Phys. 143 (1992), 405–413.

    Article  MATH  Google Scholar 

  10. E.B. Davis, Quantum Theory of Open Systems, Academic Press, London, 1976.

    Google Scholar 

  11. J. Dauns and K.H. Hofmann, Representation of rings by sections, Mem. Amer. Math. Soc. 83 (1968).

    Google Scholar 

  12. R.S. Doran and V.A. Victor, Characterizations of C*-algebras; The Gelfand-Naimark theorems, Marcel Dekker Inc., New York and Basel, 1986.

    Google Scholar 

  13. M.J. Dupré and R.M. Gillette, Banach bundles, Banach modules, and automorphisms of C*-algebras, Pitman, London, 1983.

    Google Scholar 

  14. J.M.G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Fujimoto, CP-convexity and its applications, Ph.D. dissertation, University of Florida, 1990.

    Google Scholar 

  16. I. Fujimoto, CP-duality for C*-and W*-algebras, In W.B. Arveson and R.G. Douglas (eds.), Operator Theory/Operator Algebras and Applications, Proc. Symposia in Pure Math. 51 (1990), Part 2, 117–120.

    Google Scholar 

  17. I. Fujimoto, CP-duality for C*-and W*-algebras, J. Operator Theory, to appear.

    Google Scholar 

  18. I. Fujimoto, A Gelfand-Naimark theorem for C*-algebras, submitted for publication.

    Google Scholar 

  19. I. Fujimoto, Decomposition of completely positive maps, submitted for publication.

    Google Scholar 

  20. I. Fujimoto, CP-extreme and facial structure of CP-state spaces, in preparation.

    Google Scholar 

  21. I. Fujimoto, The general Stone-Weierstrass problem in CP-convexity theory, in preparation.

    Google Scholar 

  22. I.M. Gelfand and M.A. Naimark, On the embedding of normed linear rings into the ring of operators in Hilbert space, Mat. Sbornik 12 (1943), 197–213.

    Google Scholar 

  23. R.V. Kadison, A representation theory for commutative topological algebra, Memoires Amer. Math. Soc. 7 (1951).

    Google Scholar 

  24. R.V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 56 (1952), 494–503.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Kraus, General state changes in quantum theory, Ann. of Physics 64 (1971), 311–335.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Kraus, States, Effects, and Operations, Lecture Notes in Physics, No. 190, Springer-Verlag, Berlin-Heiderberg, 1983.

    Google Scholar 

  27. V.I. Paulsen, Completely bounded maps and dilations, Longman Scientific & Technical, Essex, 1986.

    MATH  Google Scholar 

  28. F.W. Shultz, Pure states as a dual objects for C*-algebras, Commun. Math. Phys. 82 (1982), 497–509.

    Article  MathSciNet  MATH  Google Scholar 

  29. W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216.

    MathSciNet  MATH  Google Scholar 

  30. M. Takesaki, A duality in the representation theory of C*-algebras, Ann. of Math. 85 (1967), 370–382.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York-Heidelberg-Berlin, 1979.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Fujimoto, I. (1994). A Gelfand-Naimark Theorem for C*-Algebras. In: Curto, R.E., Jørgensen, P.E.T. (eds) Algebraic Methods in Operator Theory. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0255-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0255-4_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6683-9

  • Online ISBN: 978-1-4612-0255-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics