Skip to main content

A Uniform Law of Large Numbers for Set-Indexed Processes with Applications to Empirical and Partial-Sum Processes

  • Conference paper
Probability in Banach Spaces, 9

Part of the book series: Progress in Probability ((PRPR,volume 35))

Abstract

The purpose of the present paper is to establish a uniform law of large numbers (ULLN) in form of a Mean Glivenko-Cantelli result for so-called partial-sum processes with random locations and indexed by Vapnik-Chervonenkis classes (VCC) of sets in arbitrary sample spaces. The context is as follows: Let X = (X, x) be an arbitrary measurable space, \((\eta_{nj})_{1 \leq j \leq j (n),n \in \mathbb{N}}\) be a triangular array of random elements (r.e.) in X (that is, the ηnj’s are assumed to be defined on some basic probability space (p-space) \((\Omega,A,\mathbb{P})\) with values in X such that each ηnj : Ω → X is A \(\mathfrak{X}\)-measurable), and let \((\xi _{nj})_{1 \leq j \leq j(n), n \in \mathbb{N}}\) be a triangular array of real-valued random variables (r.v.) (also defined on \((\Omega,A,\mathbb{P}))\) such that for each \(n\in \mathbb{N} (\eta_{n1},\xi_{n1}),\cdots, (\eta_{nj(n)},\xi_{nj(n)})\) is a sequence of independent but not necessarily identically distributed (i.d.) pairs of r.e.’s in \((X \times \mathbb{R},X \otimes \mathbb{B})\), where \(X \otimes \mathbb{B}\) denotes the product σ-field of x and the Borel σ-field IB in ℝ; i.e. the components within each pair need not be independent. Given a class \(C\subset X\), define a set-indexed process (of sample size \(n \in \mathbb{N})S_n =(S_n(C))_{C\in C}\) by

$$S_n(C):= \sum_{j \geq (n)}\;\;\;\;1_C(\eta_{nj})\xi_{nj},\;\;\;\;\;C \in C,\;\;\;\;\;\;\;\;\;\;(1.1)$$

where 1C denotes the indicator function of C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, K.S. and Pyke, R. (1986). A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14, S82–S97.

    MathSciNet  Google Scholar 

  • Alexander, K.S. (1987). Central limit theorems for stochastic processes under random entropy conditins. Probab. The. Re. Fields 75, 351–378.

    Article  MATH  Google Scholar 

  • Arcones, M.A. Gaenssler, P. and Ziegler, K. (1992). Partial-sum processes with random locations and indexed by Vapnik Červonenkis classes of sets in arbitrary sample spaces. In: Probability in Banach Spaces 8; R.M. Dudley, M.G. Hahn and J. Kuelbs (Eds.). Progress in Probability, Vol. 30, Birkhäuser

    Google Scholar 

  • Assouad, P. (1981). Sur les classes de Vapnik Červonenkis. C.R. Acad. Sci. Paris, 292 Sèr. I, 921–924.

    MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6, 899–929. (Correction (1979) ibid. 7, 909–911).

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R.M. (1984). A course on empirical processes. Lecture Notes in Mathematics 1097, pp. 1–142, Springer, New York.

    Google Scholar 

  • Dudley, R.M., Ginè, E. and Zinn, J. (1991). Uniform and Universal Glivenko-Cantelli Classes. J. of Theoret. Probab. 4, 485–510.

    Article  MATH  Google Scholar 

  • Gaenssler, P. (1983). Empirical Processes. IMS Lecture Notes — Monograph Series, Vol. 3, Hayward California.

    Google Scholar 

  • Gaenssler, P. and Ziegler, K. (1991). On the Ossiander-Pollard maximal inequality under a bracketing condition with applications to function-indexed partial-sum processes. MSRI-Preprint 009-92, October 1991, Berkeley, California.

    Google Scholar 

  • Gaenssler, P. and Ziegler, K. (1992). On a mean Glivenko-Cantelli result for certain set-indexed processes. Preprint No. 51, University of Munich.

    Google Scholar 

  • Gaenssler, P. (1993). On recent developments in the theory of set-indexed processes: A unified approach to empirical and partial-sum processes. To appear in the Proceedings of the Fifth Prague Symposium on Asymptotic Statistics.

    Google Scholar 

  • Hoffmann-Jørgensen, J. (1984). Stochastic Processes on Polish Spaces. Unpublished manuscript. Published in 1991 as Vol. 39 of the Various Publication Series, Matematisk Institute, Aarhus Universitet.

    Google Scholar 

  • Ledoux, M. and Talagrand, M. (1991): Probability in Banach spaces, Springer, New York.

    MATH  Google Scholar 

  • Markus, M.B. (1981). Weak convergence of the empirical characteristic function. Ann. Probab. 9, 194–201.

    Article  MathSciNet  Google Scholar 

  • Pisier, G. (1983). Some applications of the metric entropy condition to harmonic analysis. Banach spaces, Harmonic Analysis, and Probability Theory. Lecture Notes in Math. 995, pp. 123–154, Springer, New York.

    Google Scholar 

  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

    Book  MATH  Google Scholar 

  • Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 2. Institute of Mathematical Statistics, Hayward, California.

    MATH  Google Scholar 

  • Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.

    MATH  Google Scholar 

  • Stengle, G. and Yukich, J.E. (1989). Some new Vapnik-Chervonenkis classes. Ann. Statist. 17, 1441–1446.

    Article  MathSciNet  MATH  Google Scholar 

  • Strobl, F. (1992). On the reversed sub-martingale property of empirical diescrepancies in arbitrary sample spaces. Preprint No. 53, University of Munich.

    Google Scholar 

  • Stute, W. (1993). Nonparametric model checks for regression. Invited talk on occasion of the Second Gauß-Symposium in Munich, August 02–07, 1993.

    Google Scholar 

  • Vapnik, V.N. and Cervonenkis, A. Ja. (1971). On the uniform convergence of relative frequencies to their probabilities. Theor. Prob. Appl. 16, 264–280.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this paper

Cite this paper

Gaenssler, P., Ziegler, K. (1994). A Uniform Law of Large Numbers for Set-Indexed Processes with Applications to Empirical and Partial-Sum Processes. In: Hoffmann-Jørgensen, J., Kuelbs, J., Marcus, M.B. (eds) Probability in Banach Spaces, 9. Progress in Probability, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0253-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0253-0_26

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6682-2

  • Online ISBN: 978-1-4612-0253-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics