Involvement of Alcohol-Metabolizing Enzymes in Retinoic Acid Synthesis and Inhibition by Ethanol

  • Gregg Duester
Part of the Drug and Alcohol Abuse Reviews book series (DAAR, volume 6)


Retinoic acid has recently been implicated as the active form of vitamin A involved in growth, development, and cellular differentiation. Retinoic acid has been implicated as a regulatory factor for some of the earliest events in vertebrate embryonic morphogenesis, including the development of the central nervous system. The mechanism of action of retinoic acid is that of a regulatory ligand for a family of retinoic acid receptors that directly modulate the transcriptional regulation of key genes involved in differentiation. Retinoic acid is derived from retinol (vitamin A alcohol) via two oxidation steps with retinal as the intermediate. Studies on the enzymology of retinoic acid synthesis have implicated alcohol dehydrogenase as a retinol dehydrogenase, and ethanol has been shown to inhibit this reaction competitively. Since ethanol is known to have teratogenic effects on central nervous system development (i.e., fetal alcohol syndrome), the mechanism of action may involve an inhibition of retinoic acid synthesis. Described here is the presently available evidence concerning the role of alcohol dehydrogenase in retinoic acid synthesis, the role of retinoic acid in neural tube development, and the role of ethanol as an agent that can disrupt both retinoic acid synthesis and neural tube development.


Retinoic Acid Neural Tube Alcohol Dehydrogenase Retinoic Acid Receptor Fetal Alcohol Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. De Luca (1991) Retinoids and their receptors in differentiation, embryogenesis, and neoplasis. FASEB J. 5, 2924–2933.PubMedGoogle Scholar
  2. 2.
    C. A. Frolik (1984) Metabolism of retinoids, in The Retinoids, vol. 2. M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds. Academic, Orlando, FL, pp. 177–208.Google Scholar
  3. 3.
    C.I. Kim, M. A. Leo, and C. S. Lieber (1992) Retinol forms retinoic acid via retinal. Arch. Biochem. Biophys. 294, 388–393.Google Scholar
  4. 4.
    M. A. Leo, C. Kim, N. Lowe, and C. S. Lieber (1989) Increased hepatic retinal dehydrogenase activity after phenobarbital and ethanol administration. Biochem. Pharmacol. 38, 97–103PubMedCrossRefGoogle Scholar
  5. 5.
    J. L. Napoli (1986) Retinol metabolism in LLC-PK1 cells: characterization of retinoic acid synthesis by an established mammalian cell line. J. Biol. Chem. 261, 13,592–13,597.Google Scholar
  6. 6.
    A. F. Bliss (1951) The equilibrium between vitamin A alcohol and aldehyde in the presence of alcohol dehydrogenase. Arch. Biochem. 31, 197–204.PubMedCrossRefGoogle Scholar
  7. 7.
    R. D. Zachman and J. A. Olson (1961) A comparison of retinene reductase and alcohol dehydrogenase of rat liver. J. Biol. Chem. 236, 2309–2313.PubMedGoogle Scholar
  8. 8.
    E. Mezey and P. R. Holt (1971) The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp. Mol. Pathol. 15, 148–156.Google Scholar
  9. 9.
    P. Julià, J. Fanés, and X. Parés (1983) Purification and partial characterization of a rat retina alcohol dehydrogenase active with ethanol and retinol. Biochem. J. 213, 547–550.PubMedGoogle Scholar
  10. 10.
    Y. Pocker and H. Li (1993) The catalytic specificity of liver alcohol dehydrogenase: vitamin A alcohol and vitamin A aldehyde activities. Adv. Exp. Med. Biol. 328, 411–418.PubMedCrossRefGoogle Scholar
  11. 11.
    K. C. Posch, M. H. E. M. Boerman, R. D. Burns, and J. L. Napoli (1991) Holocellular retinol binding protein as a substrate for microsomal retinal synthesis. Biochemistry 30, 6224–6230.PubMedCrossRefGoogle Scholar
  12. 12.
    M.-O. Lee, C. L. Manthey, and N. E. Sladek (1991) Identification of mouse liver aldehyde dehydrogenases that catalyze the oxidation of retinaldehyde to retinoic acid. Biochem. Pharmacol. 42, 1279–1285.Google Scholar
  13. 13.
    E. S. Roberts, A. D. N. Vaz, and M. J. Coon (1992) Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol, and retinal. Mol. Pharmacol. 41, 427–433.Google Scholar
  14. 14.
    G. T. M. Henehan and N. J. Oppenheimer (1993) Horse liver alcohol dehydrogenase-catalyzed oxidation of aldehydes: dismutation precedes net production of reduced nicotinamide adenine dinucleotide. Biochemistry 32, 735–738.PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Pocker, H. Li, and J. D. Page (1987) Liver alcohol dehydrogenase: metabolic and energetic aspects, in Advances in Biomedical Alcohol Research. K. O. Lindros, R. Ylikahri, and K. Kiianmaa, eds. Pergamon, London, UK, pp. 181–185.Google Scholar
  16. 16.
    D. J. Strydom and B. L. Vallee (1982) Characterization of human alcohol dehydrogenase isoenzymes by high-performance liquid chromatographic peptide mapping. Anal. Biochem. 123, 422–429.Google Scholar
  17. 17.
    E. M. Algar, T. L. Seeley, and R. S. Holmes (1983) Purification and molecular properties of mouse alcohol dehydrogenase isozymes. Eur. J. Biochem. 137, 139–147.PubMedCrossRefGoogle Scholar
  18. 18.
    X. Parés, A. Moreno, E. Cederlund, J.-O. Höög, and J. Jörnvall (1990) Class IV mammalian alcohol dehydrogenase: structural data of the rat stomach enzyme reveal a new class well separated from those already characterized. FEBS Leu. 277, 115–118.CrossRefGoogle Scholar
  19. 19.
    X. Parés, E. Cederlund, A. Moreno, N. Saubi, J.-O. Höög, and H. Jörnvall (1992) Class IV alcohol dehydrogenase (the gastric enzyme): structural analysis of human aaADH reveals class IV to be variable and confirms the presence of a fifth mammalian alcohol dehydrogenase class. FEBS Lett. 303, 69–72.PubMedCrossRefGoogle Scholar
  20. 20.
    J. L. Napoli and K. R. Race (1987) The biosynthesis of retinoic acid from retinol by rat tissues in vitro. Arch. Biochem. Biophys. 255, 95–101.Google Scholar
  21. 21.
    M. A. Leo, C. Kim, and C. S. Lieber (1987) NAD’-dependent retinol dehydrogenase in liver microsomes. Arch. Biochem. Biophy. 259, 241–249.Google Scholar
  22. 22.
    K. C. Posch, W. J. Enright, and J. L. Napoli (1989) Retinoic acid synthesis by cytosol from the alcohol dehydrogenase negative deermouse. Arch. Biochem. Biophys. 274, 171–178.Google Scholar
  23. 23.
    Z. N. Yang, G. J. Davis, T. D. Hurley, C. L. Stone, T.-K. Li, and W. F. Bosron (1993) Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol. Clin. Exp. Res. 17, 496.Google Scholar
  24. 24.
    R. Pietruszko (1979) Nonethanol substrates of alcohol dehydrogenase, in Biochemistry and Pharmacology of Ethanol, vol. 1. E. Majchrowicz and E. P. Noble, eds. Plenum, New York, pp. 87–106.CrossRefGoogle Scholar
  25. 25.
    P. Julià, J. Farrés, and X. Parés (1986) Ocular alcohol dehydrogenase in the rat: regional distribution and kinetics of the ADH-1 isoenzyme with retinol and retinal. Exp. Eye Res. 42, 305–314.CrossRefGoogle Scholar
  26. 26.
    X. Parés and P. Julià (1990) Isoenzymes of alcohol dehydrogenase in retinoid metabolism. Methods Enzymol. 189, 436–441.PubMedCrossRefGoogle Scholar
  27. 27.
    T. B. Beisswenger, B. Holmquist, and B. L. Vallee (1985) x-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: implications and inferences. Proc. Natl. Acad. Sci. USA 82, 8369–8373.Google Scholar
  28. 28.
    P. Julià, M. D. Boleda, J. Farrés, and X. Parés (1987) Mammalian alcohol dehydrogenase: characteristics of class III isoenzymes. Alcohol and Alcoholism, vol. 23 (Suppl. 1), 169–173.Google Scholar
  29. 29.
    M. Koivusalo, M. Baumann, and L. Uotila (1989) Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 257, 105–109.PubMedCrossRefGoogle Scholar
  30. 30.
    C.-S. Chen and A. Yoshida (1991) Enzymatic properties of the protein encoded by newly cloned human alcohol dehydrogenase ADH6 gene. Biochem. Biophys. Res. Commun. 181, 743–747.Google Scholar
  31. 31.
    M. J. Connor and M. H. Smit (1987) Terminal-group oxidation of retinol by mouse epidermis: inhibition in vitro and in vivo. Biochem. J. 244, 489–492.PubMedGoogle Scholar
  32. 32.
    G. Duester, M. Smith, V. Bilanchone, and G. W. Hatfield (1986) Molecular analysis of the human class I alcohol dehydrogenase gene family and nucleotide sequence of the gene encoding the ß subunit. J. Biol. Chem. 261, 2027–2033.PubMedGoogle Scholar
  33. 33.
    G. Duester (1991) human liver alcohol dehydrogenase gene expression: retinoic acid homeostasis and fetal alcohol syndrome, in Drug and Alcohol Abuse Reviews, vol. 2: Liver Pathology. R. R. Watson, ed. Humana, Clifton, NJ, pp. 375–402.CrossRefGoogle Scholar
  34. 34.
    M. J. Stewart, M. S. McBride, L. A. Winter, and G. Duester (1990) Promoters for the human alcohol dehydrogenase genes ADHI, ADH2, and ADH3: interaction of CCAAT/enhancer binding protein with elements flanking the ADH2 TATA box. Gene 90, 271–279.PubMedCrossRefGoogle Scholar
  35. 35.
    M. J. Stewart, M. L. Shean, B. W. Paeper, and G. Duester (1991) The role of CCAAT/enhancer-binding protein in the differential transcriptional regulation of a family of human liver alcohol dehydrogenase genes. J. Biol. Chem. 266, 11,59411,603.Google Scholar
  36. 36.
    C. Van Ooij, R. C. Snyder, B. W. Paeper, and G. Duester (1992) Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by HNFI, C/EBPa, LAP, and DBP. Mol. Cell. Biol. 12, 3023–3031.Google Scholar
  37. 37.
    G. Duester, M. L. Shean, M. S. McBride, and M. J. Stewart (1991) Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Mol. Cell. Biol. 11, 1638–1646.Google Scholar
  38. 38.
    P. P. Harding and G. Duester (1992) Retinoic acid activation and thyroid hormone repression of the human alcohol dehydrogenase gene ADH3. J. Biol. Chem. 267, 14,145–14,150.Google Scholar
  39. 39.
    A. Moreno and X. Parés (1991) Purification and characterization of a new alcohol dehydrogenase from human stomach. J. Biol. Chem. 266, 1128–1133.PubMedGoogle Scholar
  40. 40.
    M. Yasunami, C.-S. Chen, and A. Yoshida (1991) A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc. Natl. Acad. Sci. USA 88, 7610–7614.PubMedCrossRefGoogle Scholar
  41. 41.
    G. Wolf (1984) Multiple functions of vitamin A. Physiol. Rev. 64, 873–937.Google Scholar
  42. 42.
    A. B. Roberts and M. B. Sporn (1984) Cellular biology and biochemistry of the retinoids, in The Retinoids, vol. 2. M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds. Academic, Orlando, FL, pp. 209–286.Google Scholar
  43. 43.
    A. Adinolfi, M. Adinolfi, and D. A. Hopkinson (1984) Immunological and biochemical characterization of the human alcohol dehydrogenase chi-ADH isozyme. Ann. Hum. Genet. 48, 1–10.PubMedCrossRefGoogle Scholar
  44. 44.
    J. L. Napoli, K. C. Posch, and R. D. Burns (1992) Microsomal retinal synthesis: retinol versus holo-CRBP as substrate and evaluation of NADP, NAD and NADPH as cofactors. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1120, 183–186.Google Scholar
  45. 45.
    B. P. Kakkad and D. E. Ong (1988) Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J. Biol. Chem. 263, 12,916–12,919.Google Scholar
  46. 46.
    D. E. Ong, P. C. Lucas, B. Kakkad, and T. C. Quick (1991) Ontogeny of two vitamin A-metabolizing enzymes and two retinol-binding proteins present in the small intestine of the rat. J. Lipid Res. 32, 1521–1527.PubMedGoogle Scholar
  47. 47.
    K. G. Burnett and M. R. Felder (1978) I’eromyscus alcohol dehydrogenase: lack of crossreacting material in enzyme-negative animals. Biochem. Genet. 16, 1093–1105.Google Scholar
  48. 48.
    G. Ekström, T. Cronholm, C. Norsten-Höög, and M. Ingelman-Sundberg (1993) Dehydrogenase-dependent metabolism of alcohols in gastric mucosa of deer mice lacking hepatic alcohol dehydrogenase. Biochem. Pharmacol. 45, 1989–1994.Google Scholar
  49. 49.
    H. Eklund, P. Müller-Wille, E. Horjales, O. Futer, B. Holmquist, B. L. Vallee, J.-O. Höög, R. Kaiser, and H. Jörnvall (1990) Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur. J. Biochem. 193, 303–310.PubMedCrossRefGoogle Scholar
  50. 50.
    M. A. Satre, K. E. Ugen, and D. M. Kochhar (1992) Developmental changes in endogenous retinoids during pregnancy and embryogenesis in the mouse. Biol. Reprod. 46, 802–810.CrossRefGoogle Scholar
  51. 51.
    R. W. Yost, E. H. Harrison, and A. C. Ross (1988) Esterification by rat liver microsomes of retinol bound to cellular retinol-binding protein. J. Biol. Chem. 263, 18,693–18,701.Google Scholar
  52. 52.
    E. Ruberte, V. Friederich, P. Chambon, and G. Morriss-Kay (1993) Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118, 267–282.PubMedGoogle Scholar
  53. 53.
    M. Wagner, C. Thaller, T. Jessell, and G. Eichele (1990) Polarizing activity and retinoid synthesis in the floor plate of the neural tube. Nature 345, 819–822.PubMedCrossRefGoogle Scholar
  54. 54.
    M. L. Shean and G. Duester (1992) The role of alcohol dehydrogenase in retinoic acid homeostasis and fetal alcohol syndrome. Alcohol and Alcoholism 28(Suppl. 2), 51–56.Google Scholar
  55. 55.
    M. Zgombic and G. Duester (1993) DNA elements mediating retinoid and thyroid hormone regulation of alcohol dehydrogenase gene expression. Adv. Exp. Med. Biol. 328, 571–580.PubMedCrossRefGoogle Scholar
  56. 56.
    H. De Thé, M. D. M. Vivanco-Ruiz, P. Tiollais, H. Stunnenberg, and A. Dejean (1990) Identification of a retinoic acid responsive element in the retinoic acid receptor ß gene. Nature 343, 177–180.PubMedCrossRefGoogle Scholar
  57. 57.
    M. Sucov, K. K. Murakami, and R. M. Evans (1990) Characterization of an autoregulated response element in the mouse retinoic acid receptor type ß gene. Proc. Natl. Acad. Sci. USA 87, 5392–5396.PubMedCrossRefGoogle Scholar
  58. 58.
    B. Hoffmann, J. M. Lehmann, X. Zhang, T. Hermann, M. Husmann, G. Graupner, and M. Pfahl (1990) A retinoic acid receptor-specific element controls the retinoic acid receptor-13 promoter. Mol. Endocrino!. 4, 1727–1736.Google Scholar
  59. 59.
    W. C. Smith, H. Nakshatri, P. Leroy, J. Rees, and P. Chambon (1991) A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J. 10, 2223–2230.PubMedGoogle Scholar
  60. 60.
    V. Giguère, S. Lyn, P. Yip, C.-H. Siu, and S. Amin (1990) Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA 87, 6233–6237.PubMedCrossRefGoogle Scholar
  61. 61.
    A. B. Roberts, C. A. Frolik, M. D. Nichols, and M. B. Sporn (1979) Retinoiddependent induction of the in vivo and in vitro metabolism of retinoic acid in tissues of the vitamin A-deficient hamster. J. Biol. Chem. 254, 6303–6309.PubMedGoogle Scholar
  62. 62.
    B. Lindblad and R. Olsson (1976) Unusually high levels of blood alcohol? JAMA 236, 1600–1602.PubMedCrossRefGoogle Scholar
  63. 63.
    M. D. Boleda, J. Farrés, C. Guerri, and X. Parés (1992) Alcohol dehydrogenase isoenzymes in rat development. Effect of maternal ethanol consumption. Biochem. Pharmacol. 43, 1555–1561.Google Scholar
  64. 64.
    M. D. Collins, C. Eckhoff, I. Chahoud, G. Bochert, and H. Nau (1992) 4-methylpyrazole partially ameliorated the teratogenicity of retinol and reduced the metabolic formation of all-trans-retinoic acid in the mouse. Arch. Toxicol. 66, 652–659.PubMedCrossRefGoogle Scholar
  65. 65.
    T.-K. Li and H. Theorell (1969) Human liver alcohol dehydrogenase: inhibition by pyrazole and pyrazole analogs. Acta Chem. Scand. 23, 892.CrossRefGoogle Scholar
  66. 66.
    C. S. Lieber (1991) Hepatic, metabolic and toxic effects of ethanol: 1991 update. Alcohol. Clin. Exp. Res. 15, 573–592.Google Scholar
  67. 67.
    M. A. Grummer and J. W. Erdman, Jr. (1983) Effect of chronic alcohol consumption and moderate fat diet on vitamin A status in rats fed either vitamin A or 13-carotene. J. Nutr. 113, 350–364.PubMedGoogle Scholar
  68. 68.
    S. Adachi, H. Moriwaki, Y. Muto, Y. Yamada, Y. Fukutomi, M. Shimazaki, M. Okuno, and M. Ninomiya (1991) Reduced retinoid content in hepatocellular carcinoma with special reference to alcohol consumption. Hepatology 14, 776–780.PubMedCrossRefGoogle Scholar
  69. 69.
    M. Rasmussen, R. Blomhoff, P. Helgerud, L. A. Solberg, T. Berg, and K. R. Norum (1985) Retinol and retinyl esters in parenchymal and nonparenchymal rat liver cell fractions after long term administration of ethanol. J. Lipid Res. 26, 1112–1119.Google Scholar
  70. 70.
    H. I. Friedman, S. Mobarham, J. Hupert, C. Lucchixi, C. Henderson, P. Lanzenberg, and T. J. Layden (1989) In vitro stimulation of rat liver retinyl ester hydrolase by ethanol. Arch. Biochem. Biophys. 269, 69–74.Google Scholar
  71. 71.
    M. A. Leo, J. M. Lasker, J. L. Raucy, C.-I. Kim, M. Black, and C. S. Lieber (1989) Metabolism of retinol and retinoic acid by human liver cytochrome P4501IC8. Arch. Biochem. Biophys. 269, 305–312.Google Scholar
  72. 72.
    A. B. Roberts, M. D. Nichols, D. L. Newton, and M. B. Sporn (1979) In vitro metabolism of retinoic acid in hamster intestine and liver. J. Biol. Chem. 254, 6296–6302.PubMedGoogle Scholar
  73. 73.
    M. A. Grummer and R. D. Zachman (1990) The effect of maternal ethanol ingestion on fetal vitamin A in the rat. Pediatr. Res. 28, 186–189.Google Scholar
  74. 74.
    M. A. Grummer, R. E. Langhough, and R. D. Zachman (1993) Maternal ethanol ingestion effects on fetal rat brain vitamin A as a model for fetal alcohol syndrome. Alcohol. Clin. Exp. Res. 17, 592–597.Google Scholar
  75. 75.
    S. K. Clarren and D. W. Smith (1978) The fetal alcohol syndrome. N. Engl. J. Med. 298, 1063–1067.PubMedCrossRefGoogle Scholar
  76. 76.
    A. P. Streissguth, S. Landesman-Dwyer, J. C. Martin, and D. W. Smith (1980) Teratogenic effects of alcohol in humans and laboratory animals. Science 209, 353–361.PubMedCrossRefGoogle Scholar
  77. 77.
    L. Burd and J. T. Martsolf (1989) Fetal alcohol syndrome: diagnosis and syndromal variability. Physiol. Behay. 46, 39–43.CrossRefGoogle Scholar
  78. 78.
    A. J. Ammann, D. W. Wara, M. J. Cowan, D. J. Barrett, and E. R. Stiehm (1982) The DiGeorge syndrome and the fetal alcohol syndrome. Am. J. Dis. Child. 136, 906–908.PubMedGoogle Scholar
  79. 79.
    G. J. Lammer, D. T. Chen, R. M. Hoar, N. D. Agnish, P. J. Benke, J. T. Braun, C. J. Curry, P. M. Fernhoff, A. W. Grix, I. T. Lott, J. M. Richard, and S. C. Sun (1985) Retinoic acid embryopathy. N. Engl. J. Med. 313, 837–841.PubMedCrossRefGoogle Scholar
  80. 80.
    H. K. Biesalski (1989) Comparative assessment of the toxicology of vitamin A and retinoids in man. Toxicology 57, 117–161.PubMedCrossRefGoogle Scholar
  81. 81.
    R. N. Ruckman (1990) Cardiovascular defects associated with alcohol, retinoic acid, and other agents. Ann. NY Acad. Sci. 588, 281–288.PubMedCrossRefGoogle Scholar
  82. 82.
    G. H. Sperber (1989) Craniofacial Embryology, Ed. 4. Wright/Butterworth Scientific, Boston.Google Scholar
  83. 83.
    J. N. Thompson, J. M. Howell, and G. A. J. Pitt (1964) Vitamin A and reproduction in rats. Proc. R. Soc. London Ser. B 159, 510–535.CrossRefGoogle Scholar
  84. 84.
    J. N. Thompson, J. M. Howell, G. A. J. Pitt, and C. I. McLaughlin (1969) Biological activity of retinoic acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br. J. Nutr. 23, 471–485.PubMedCrossRefGoogle Scholar
  85. 85.
    SJ. G. Wilson, C. B. Roth, and J. Warkamy (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J. Anat. 92, 189–217.PubMedCrossRefGoogle Scholar
  86. 86.
    K. K. Sulik, M. C. Johnston, and M. A. Webb (1981) Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214, 936–938.PubMedCrossRefGoogle Scholar
  87. 87.
    W. S. Webster, D. A. Walsh, S. E. McEwen, and A. H. Lipson (1983) Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome. Teratology 27, 231–243.PubMedCrossRefGoogle Scholar
  88. 88.
    R. Rugh (1990) The Mouse: Its Reproduction and Development. Oxford University Press, New York.Google Scholar
  89. 89.
    M. Petkovich, N. J. Brand, A. Krust, and P. Chambon (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330, 444–450.PubMedCrossRefGoogle Scholar
  90. 90.
    V. Giguère, E. S. Ong, P. Segui, and R. M. Evans (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330, 624–629.PubMedCrossRefGoogle Scholar
  91. 91.
    N. Brand, M. Petkovich, A. Krust, P. Chambon, H. De Thé, A. Marchio, P. Tiollais, and A. Dejean (1988) Identification of a second human retinoic acid receptor. Nature 332, 850–853.PubMedCrossRefGoogle Scholar
  92. 92.
    D. Benbrook, E. Lernhardt, and M. Pfahl (1988) A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333, 669–672.PubMedCrossRefGoogle Scholar
  93. 93.
    E. Boncinelli, A. Simeone, D. Acampora, and F. Mavilio (1991) HOX gene activation by retinoic acid. Trends Genet. 7, 329–334.PubMedGoogle Scholar
  94. 94.
    L. Arcioni, A. Simeone, S. Guazzi, V. Zappavigna, E. Boncinelli, and F. Mavilio (1992) The upstream region of the human homeobox gene HOX3D is a target for regulation by retinoic acid and HOX homeoproteins. EMBO J. 11, 265–277.PubMedGoogle Scholar
  95. 95.
    P. Hunt, J. Whiting, I. Muchamore, H. Marshall, and R. Krumlauf (1991) Homeobox genes and models for patterning the hindbrain and branchial arches. Development 112(Suppl. 1), 187–196.Google Scholar
  96. 96.
    A. J. Durston, J. P. M. Timmermans, W. J. Hage, H. F. J. Hendriks, N. J. De Vries, M. Heideveld, and P. D. Nieuwkoop (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144.PubMedCrossRefGoogle Scholar
  97. 97.
    H. L. Sive, B. W. Draper, R. M. Harland, and H. Weintraub (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev. 4, 932–942.PubMedCrossRefGoogle Scholar
  98. 98.
    N. Papalopulu, J. D. W. Clarke, L. Bradley, D. Wilkinson, R. Krumlauf, and N. Holder (1991) Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 113, 1145–1158.PubMedGoogle Scholar
  99. 99.
    K. Hunter, M. Maden, D. Summerbell, U. Eriksson, and N. Holder (1991) Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Proc. Natl. Acad. Sci. USA 88, 3666–3670.PubMedCrossRefGoogle Scholar
  100. 100.
    M. Maden and N. Holder (1991) The involvement of retinoic acid in the development of the vertebrate central nervous system. Development 113(Suppl. 2), 87–94.Google Scholar
  101. 101.
    M. Wagner, B. Han, and T. M. Jessell (1992) Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development 116, 55–66.PubMedGoogle Scholar
  102. 102.
    Dencker, R. d’Argy, B. R. G. Danielsson, H. Ghantous, and G. O. Sperber (1987) Saturable accumulation of retinoic acid in neural and neural crest derived cells in early embryonic development. Dev. Pharmacol. Ther. 10, 212–223.Google Scholar
  103. 103.
    B. L. M. Hogan, C. Thaller, and G. Eichele (1992) Evidence that Hensen’s node is a site of retinoic acid synthesis. Nature 359, 237–241.PubMedCrossRefGoogle Scholar
  104. 104.
    MY. Chen, L. Huang, A. F. Russo, and M. Solursh (1992) Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc. Natl. Acad. Sci. USA 89, 10,056–10,059.Google Scholar
  105. 105.
    J. Rossant, R. Zirngibl, D. Cado, M. Shago, and V. Giguère (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333–1344.PubMedCrossRefGoogle Scholar
  106. 106.
    MW. Balkan, M. Colbert, C. Bock, and E. Linney (1992) Transgenic indicator mice for studying activated retinoic acid receptors during development. Proc. Natl. Acad. Sci. USA 89, 3347–3351.PubMedCrossRefGoogle Scholar
  107. 107.
    G. Duester (1991) A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol. Clin. Exp. Res. 15, 568–572.Google Scholar
  108. 108.
    M. Zgombic-Knight, M. A. Satre, and G. Duester (1994) Differential activity of the promoter for the human alcohol dehydrogenase (retinol dehydrogenase) gene ADH3 in neural tube of transgenic mouse embryos. J. Biol. Chem. 269, 6790–6795.PubMedGoogle Scholar
  109. 109.
    M. Smith, D.A. Hopkinson, and H. Harris (1971) Developmental changes and polymorphism in human alcohol dehydrogenase. Ann. Hum. Genet. 34, 251–271.PubMedCrossRefGoogle Scholar
  110. 110.
    M. A. Satre, M. Zgombic-Knight, and G. Duester (1994) The complete structure of human class IV alcohol dehydrogenase (retinol dehydrogenase) determined from the ADH7 gene. J. Biol. Chem. 269, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gregg Duester

There are no affiliations available

Personalised recommendations