Advertisement

Alcohol and the Release of Vasopressin and Oxytocin

  • Alejandro M. Dopico
  • José R. Lemos
  • Steven N. Treistman
Part of the Drug and Alcohol Abuse Reviews book series (DAAR, volume 6)

Abstract

Both clinical observations and basic research studies performed during the course of many years have provided evidence that ethanol (ETOH) affects the release of vasopressin (AVP) and oxytocin (OT) from the neurohypophysis. In addition to the well-known diuresis that occurs after ETOH intake1-3several reports demonstrated that ETOH ingestion results in a reduction of plasma AVP levels in mammals.4-6In addition, the amount of OT released into plasma during human labor is reduced after intravenous ETOH administration.7

Keywords

Magnocellular Neuron ETOH Ingestion Shaker Potassium Channel Neurosecretory Terminal Posterior Pituitary Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. Nicholson and H. M. Taylor (1938) Effect of alcohol on the water and electrolyte balance in man.J. Clin. Invest.17, 279–285.PubMedGoogle Scholar
  2. 2.
    M. G. Eggleton (1942) Diuretic action of alcohol in man.J. Physiol. (Lond.) 101172–191.Google Scholar
  3. 3.
    H. B. van Dyke and R. G. Ames (1951) Alcohol diuresis.Acta Endocrinol.7, 110–121.Google Scholar
  4. 4.
    C. R. Kleeman, M. E. Robini, E. Lamdin, and F. H. Epstein (1955) Studies of alcohol diuresis. II. The evaluation of ethyl alcohol as an inhibitor of the neurohypophysis.J. Clin. Invest.34, 448–455.PubMedGoogle Scholar
  5. 5.
    G. Eisenhofer and R. H. Johnson (1982) Effect of ethanol ingestion on plasma vasopressin and water balance in humans.Am. J. Physiol.242, R522–R527.PubMedGoogle Scholar
  6. 6.
    P. Chiodera and V. Coiro (1990) Inhibitory effect of ethanol on the arginine-vasopressin response to insulin-induced hypoglycemia and the role of endogenous opioids.Neuroendocrinology51, 501–504.PubMedGoogle Scholar
  7. 7.
    G. L. D. Gibbens and T. Chard (1976) Observations on maternal oxytocin release during human labor and the effect of intravenous ethanol administration.Am. J. Obstet. Gynecol.126, 243–246.PubMedGoogle Scholar
  8. 8.
    B. U. Bradford, C. B. Seed, J. A. Handler, D. T. Forman, and R. G. Thurman (1993) Evidence that catalase is a major pathway of ethanol oxidation in vivo: dose-response studies in deer mice using methanol as a selective substrate.Arch. Biochem. Biophys.303, 172–176.PubMedGoogle Scholar
  9. 9.
    T. Cronholm (1993) Ethanol metabolism in isolated hepatocytes. Effects of methylene blue, cyanamide and penicillamine on the redox state of the bound coenzyme and on the substrate exchange at alcohol dehydrogenase.Biochem. Pharmacol.45, 553–558.PubMedGoogle Scholar
  10. 10.
    K. Engel, J.O. Hoog, B. Holmquist, M. Estonius, H. Jornvall, and B. L. Vallee (1993) Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.Proc. Natl. Acad. Sci. USA90, 2491–2494.Google Scholar
  11. 11.
    B. V. Plapp, D. W. Green, H. W. Sun, D. H. Park, and K. Kim (1993) Substrate specificity of alcohol dehydrogenases.Adv. Exp. Med. Biol.328, 391–400.PubMedGoogle Scholar
  12. 12.
    C. L. Stone, W. F. Bosron, and M. F. Dunn (1993) Amino acid substitutions at position 47 of human beta 1 beta 1 and beta 2 beta 2 alcohol dehydrogenases affect hydride transfer and coenzyme dissociation rate constants.J. Biol. Chem.268, 892–899.PubMedGoogle Scholar
  13. 13.
    K. Lederis (1965) An electron microscopic study of the human neurohypophysis.Z. Zellforsch65, 847–868.PubMedGoogle Scholar
  14. 14.
    R. M. Bergland and R. M. Torack (1969) An electron microscopic study of the human infundibulum.Z. Zellforsch99, 1–12.PubMedGoogle Scholar
  15. 15.
    G. P. Kozlowski (1990) Alcohol-neuroendocrine interactions: vasopressin and oxytocin, inBiochemistry and Physiology of Substances Abusevol. 2. R. R. Watson, ed. CRC, Boca Raton, FL, pp. 257–277.Google Scholar
  16. 16.
    B. W. Scheithauer, E. Horvath, and K. Kovacs (1992) Ultrastructure of the neurohypophysis.Microsc. Tech.20, 177–186.Google Scholar
  17. 17.
    S. Reichin (1992) Neuroendocrinology, inWilliam’s Textbook of Endocrinology8th ed. J. D. Wilson and D. W. Foster, eds. Saunders, Philadelphia, PA. Ch. 5, pp. 135–220.Google Scholar
  18. 18.
    E. G. Stopa, V. Kuo LeBlanc, D. H. Hill, and E. L. P. Anthony (1993) A general overview of the anatomy of the neurohypophysis, in Ann. NYAcad. Sci., vol. 689The Neurohypophysis: A Window on Brain Function. W. G. North, A. M. Moses, and L. Share, eds. New York, pp. 6–15.Google Scholar
  19. 19.
    M. J. Brownstein, J. T. Russell, and H. Gainer (1982) Biosynthesis of posterior pituitary hormones, inFrontiers in Neuroendocrinologyvol. 7. W. F. Ganong and L. Martini, eds. Raven, New York, pp. 31–43.Google Scholar
  20. 20.
    B. T. Pickering, R. W. Swann, and C. B. Gonzalez (1986) Biosynthesis and processing of neurohypophysial hormones, inNeuropeptides and Behaviorvol. 2, Pergamon, Oxford, pp. 1–22.Google Scholar
  21. 21.
    H. Schmale, S. Fehr, and D. Richter (1987) Vasopressin biosynthesis: from gene to peptide hormone.Kidney Int.32(Suppl. 21), 8–13.Google Scholar
  22. 22.
    J. Nordmann (1977) Ultrastructural morphometry of the rat neurohypophysis.J. Anat.123, 213–218.PubMedGoogle Scholar
  23. 23.
    C.B. Gonzalez, C. E. Caorsi, and C. D. Figueroa (1993) Structure of neurosecretory granules and the chemistry of exocytosis, inAnn. NYAcad. Sci. vol. 689 The Neurohypophysis: A Window on Brain Function. W. G. North, A. M. Moses, and L. Share, eds. New York, pp. 59–73.Google Scholar
  24. 24.
    R. B. Kelly (1988) The cell biology of the nerve terminal.Neuron1, 431–438.PubMedGoogle Scholar
  25. 25.
    N. Hirokawa, K. Sobue, K. Kanda, A. Harada, and H. Yorifuji (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I.J. Cell Biol.108, 111–126.PubMedGoogle Scholar
  26. 26.
    S. G. Seyama, G. S. Pearl, and Y. Takei (1980) Ultrastructural study of the human neurohypophysis. III. Vascular and perivascular structures.Cell Tissue Res.206, 291–302.PubMedGoogle Scholar
  27. 27.
    B. Meister, M. J. Villar, S. Ceccatelli, and T. Höckfelt (1990) Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: an immunohistochemical study using experimental manipulations.Neuroscience37, 603–633.PubMedGoogle Scholar
  28. 28.
    C. M. Paden and S. J. Hapner (1991) Monoclonal antibodies identify two novel proteins associated with vasopressin secretory granules of the rat neurohypophysis.Brain Res.545, 151–163.PubMedGoogle Scholar
  29. 29.
    J.F. Morris and D. V. Pow (1993) New anatomical insights into the inputs and outputs from hypothalamic magnocellular neurons, inAnn. NYAcad. Sci. vol. 689,The Neurohypophysis: A Window on Brain Function. W. G. North, A. M. Moses, and L. Share, eds. New York, pp. 16–33.Google Scholar
  30. 30.
    C. M. Paden, M. Tian, and W. E. Armstrong (1993) Differential distribution of novel antigens within vasopressin-dense core vesicles revealed by monoclonal antibodies, inAnn. NYAcad. Sci. vol. 689 The Neurohypophysis: A Window on Brain Function. W. G. North, A. M. Moses, and L. Share, eds. New York, pp. 649–650.Google Scholar
  31. 31.
    R. C. Kleeman (1972) Water metabolism, inClinical Disorders of Fluid and Electrolyte Metabolism.H. Maxwell and C. R. Kleeman, eds. McGraw-Hill, New York, pp. 243–257.Google Scholar
  32. 32.
    H. W. Haggard, L. A. Greenberg, and P. P. Carroll (1941) Studies on the absorption, distribution and elimination of alcohol.J. Pharmacol. Exp. Ther.71, 349–357.Google Scholar
  33. 33.
    G. W. Bisset and J. M. Walker (1957) The effects of nicotine, hexamethonium and ethanol on the secretion of antidiuretic and oxytocic hormones of the rat.Br. J. Pharmacol.12, 461–467.Google Scholar
  34. 34.
    C. Marquis, J. Marchetti, C. Burlet, and M. Boulange (1975) Secretion urinaire et hormone antidiuretique chez des rats soumis a une administration repetee d’ethanol.CR Seances Soc. Biol.169, 154–161.Google Scholar
  35. 35.
    J. Linkola, F. Fyhrquist, and O. Fosander (1977) Effects of ethanol on urinary arginine vasopressin excretion in two rat strains selected for their different ethanol preferences.Acta Physiol. Scand.101, 126–128.PubMedGoogle Scholar
  36. 36.
    D. L. Colbern, J. Ten Haff, B. Tabakoff, and T. B. Van Wimersma Greidanus (1985) Ethanol increases plasma vasopressin shortly after intraperitoneal injection in rats.Life Sci.37, 1029–1032.PubMedGoogle Scholar
  37. 37.
    N. Falke (1991) Modulation of oxytocin and vasopressin release at the level of the neurohypophysis, inProgress in Neurobiologyvol. 36. G. A. Kerkut and J. W. Phillis, eds. Pergamon, Great Britain, pp. 465–484.Google Scholar
  38. 38.
    W R. Crowley and W. E. Armstrong (1992) Neurochemical regulation of oxytocin secretion in lactation.Endocrine Rev.13, 33–65.Google Scholar
  39. 39.
    D. A. Miller and J. A. Mill, Jr. (1967) Interactions among ethanol, hypothermia and asphyxia in guinea pigs.Cryobiology3, 400.Google Scholar
  40. 40.
    N. Rahia (1960) Effect of ethanol on cytological changes induced by salt load in nucleus supraopticus of rat.Proc. Soc. Exp. Med. Biol.103, 387–391.Google Scholar
  41. 41.
    D. H. Van Thiel and R. Lester (1976) Alcoholism: its effects on hypothalamicpituitary-gonadal function.Gastroenterology 71, 318–326.PubMedGoogle Scholar
  42. 42.
    P. L. Hoffman, C. L. Melchior, and B. Tabakoff (1983) Vasopressin maintenance of ethanol tolerance requires intact brain noradrenergic systems.Life Sci.32, 1065.PubMedGoogle Scholar
  43. 43.
    M. L. Adams and T. J. Cicero (1991) Effects of alcohol on 3-endorphin and reproductive hormones in the male rat.Alcohol. Clin. Exp. Res.15, 685–692.PubMedGoogle Scholar
  44. 44.
    G. A. Olson, R. D. Olson, and A. B. Kastin (1991) Endogenous opiates: 1991. Peptides13, 1247–1287.Google Scholar
  45. 45.
    V. Coiro, A. Alboni, D. Gramellini, C. Cigarini, L. Bianconi, D. Pignatti, R. Volpi, and P. Chiodera (1992) Inhibition by ethanol of the oxytocin response to breast stimulation in normal women and the role of endogenous opioids.Acta Endocrino!.126, 213–216.Google Scholar
  46. 46.
    G. Dayanithi, E. L. Stuenkel, and J. J. Nordmann (1992) Intracellular calcium and hormone release from nerve endings of the neurohypophysis in the presence of opioid agonists and antagonists.Exp. Brain Res.90, 539–545.PubMedGoogle Scholar
  47. 47.
    M. Kato, C. Chapman, and R. J. Bicknell (1992) Activation of K-opioid receptors inhibits depolarisation-evoked exocytosis but not the rise in intracellular Caz’ in secretory nerve terminals of the neurohypophysis.Brain Res.574, 138–146.PubMedGoogle Scholar
  48. 48.
    I. Neumann, J. A. Russell, and R. Landgraf (1992) Endogenous opioids regulate intracerebral oxytocin release during parturition in a region-specific manner.Prog. Brain Res.91, 55–58.PubMedGoogle Scholar
  49. 49.
    E. Acquas, M. Meloni, and G. Di Chiara (1993) Blockade of 8-opioid receptors in the nucleus accumbens prevents ethanol-induced stimulation of dopamine release.Eur. J. Pharmacol.230, 239–241.PubMedGoogle Scholar
  50. 50.
    H. J. Little (1991) Mechanisms that may underlie the behavioural effects of ethanol, inProgress in Neurobiologyvol. 36. G. A. Kerkut and J. W. Phillis,eds., Pergamon, Great Britain, pp. 171–194.Google Scholar
  51. 51.
    M. Nakahiro, O. Arakawa, and T. Narahashi (1991) Modulation of aminobutyric acid receptor-channel complex by alcohols.J. Pharmacol. Exp. Ther.259, 235–259.PubMedGoogle Scholar
  52. 52.
    K. A. Wafford, D. M. Burnett, N. J. Leidenheimer, D. R. Burt, J. B. Wang, P. Kofuji, T. V. Dunwiddie, R. A. Harris, and J. M. Sikela (1991) XXXNeuron7, 27–33.PubMedGoogle Scholar
  53. 53.
    J. Reynolds, A. Prasad, and J. F. MacDonald (1992) Ethanol modulation of GABAreceptor-activated Cl-currents in neurons of the chick, rat and mouse central nervous system.Eur. J. Pharmacol.224, 173–181.PubMedGoogle Scholar
  54. 54.
    K. A. Wafford and P. J. Whiting (1992) Ethanol potentiation of GABA receptors requires phosphorylation of the alternatively spliced variant of the 2 subunit.FEES Len.313, 113–117.Google Scholar
  55. 55.
    P. L. Hoffman, C. S. Rabe, F. Moses, and B. Tabakoff (1989) N-Methyl-n-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production.J. Neurochem.52, 1937–1940.PubMedGoogle Scholar
  56. 56.
    D. M. Lovinger, G. White, and F. F. Weight (1989) Ethanol inhibits NMDA activated ion currents in hippocampal neurones.Science243, 1721–1724.PubMedGoogle Scholar
  57. 57.
    A. Costa, S. A. Yasin, D. Hucks, M. L. Forsling, G. M. Besser, and A. Grossman (1992) Differential effects of neuroexcitatory amino acids on corticotropin-releasing hormone-41 and vasopressin release form rat hypothalamic explants.Endocrinology131, 2595–2602.PubMedGoogle Scholar
  58. 58.
    R. Ouvrier and F. Billson (1986) Optic nerve hypoplasia: a review.J. Child Neurol.1, 181–188.PubMedGoogle Scholar
  59. 59.
    U. Roessman, M. E. Velasco, E. J. Small, and A. Hori (1987) Neuropathology of “septooptic dysplasia” (de Morsier syndrome) with immunohistochemical studies of the hypothalamus and pituitary gland.J. Neuropathol. Exp. Neurol.46, 597–608.Google Scholar
  60. 60.
    G. B. Schaefer, R. M. Shuman, D. A. Wilson, A. Pellicer, J. Echevarria, L. Paisan, and J. Quero (1991) Partial agenesis of the anterior corpus callosum: correlation between appearance, imaging, and neuropathology.Pediatr. Neurol.7, 39–44.PubMedGoogle Scholar
  61. 61.
    C. L. Coulter, R. W. Leech, B. S. Schaefer, B. W. Scheithauer, and R. A. Brumback (1993) Midline cerebral dysgenesis, dysfunction of the hypothalamic-pituitary axis, and fetal alcohol effects.Arch. Neurol.50, 771–775.PubMedGoogle Scholar
  62. 62.
    G. P. Kozlowski, J. H. de Schweinitz, and M. Sadeq (1988) Alcohol administration reduces the number of immunoreactive vasopressin perikarya.Soc. Neurosci. Abstr.14, 196.Google Scholar
  63. 63.
    G. P. Kozlowski, S. Long, and J. H. deSchweinitz (1989) Opposite effects of alcohol on numbers of immunoreactive vasopressin (VP) and oxytocin (OT) neurons in the paraventricular nucleus (PVN).Alcohol. Clin. Exp. Res.13, 317.Google Scholar
  64. 64.
    W. W. Douglas and A. M. Poisner (1964) Stimulus-secretion in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis.J. Physiol.172, 1–18.PubMedGoogle Scholar
  65. 65.
    W W. Douglas and A. M. Poisner (1964) Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin.J. Physiol.172, 19–30.PubMedGoogle Scholar
  66. 66.
    W. W. Douglas (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells.Br. J. Pharmacol.34, 451–474.PubMedGoogle Scholar
  67. 67.
    R. J. Bicknell, M. Cazalis, G. Dayanithi, and J. J Nordmann (1985) Calcium dependence of hormone release from isolated neurohypophysial nerve endings (neurosecretosomes) of the rat.J. Physiol.369, 166P.Google Scholar
  68. 68.
    M. Cazalis, G. Dayanithi, and J. J. Nordmann (1987) Hormone release from isolated nerve endings of the rat neurohypophysis.J. Physiol.390, 55–70.PubMedGoogle Scholar
  69. 69.
    M. Cazalis, G. Dayanithi, and J. J. Nordmann (1987) Requirements for hormone release from permeabilized nerve endings isolated from the rat neurohypophysis.J. Physiol.390, 71–91.PubMedGoogle Scholar
  70. 71.
    M. Cazalis, G. Dayanithi, and J. J. Nordmann (1985) The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe.J. Physiol.369, 45–60.PubMedGoogle Scholar
  71. 71.
    J. R. Lemos and J. J. Nordmann (1986) Ionic channels and hormone release from peptidergic nerve terminals.J. Exp. Biol.124, 53–72.PubMedGoogle Scholar
  72. 72.
    J. J. Nordmann, G. Dayanithi, and J. R. Lemos (1987) Isolated neurosecretory nerve endings as a tool for studying the mechanism of stimulus-secretion coupling.Biosci. Rep.7, 411–426.PubMedGoogle Scholar
  73. 73.
    J. J. Nordmann and G. Dayanithi (1988) Release of neuropeptides does not only occur at nerve terminals.Biosci. Rep.8, 471–484.PubMedGoogle Scholar
  74. 74.
    X. Wang, S. N. Treistman, and J. R. Lemos (1991) Direct identification of individual vasopressin-containing nerve terminals of the rat neurohypophysis after “whole-cell” patch-clamp recordings.Neurosci. Lett.124, 125–128.PubMedGoogle Scholar
  75. 75.
    X. Wang, J. R. Lemos, G. Dayanithi, J. J. Nordmann, and S. N. Treistman (1991) Ethanol reduces vasopressin release by inhibiting calcium currents in nerve terminals.Brain Res.551, 338–341.PubMedGoogle Scholar
  76. 76.
    X. Wang, G. Dayanithi, J. R. Lemos, J. J. Nordmann, and S. N. Treistman (1991) Calcium currents and peptide release from neurohypophysial terminals are inhibited by ethanol.J. Pharmacol. Exp. Ther.259, 705–711PubMedGoogle Scholar
  77. 77.
    P. Camacho-Nasi and S. N. Treistman (1986) Ethanol effects on voltage-dependent membrane conductances: comparative sensitivity of channel populations in Aplysia neurons.Cell Mol. Neurobiol.6, 263–279.PubMedGoogle Scholar
  78. 78.
    L. C. Daniell and S. W. Leslie (1986) Inhibition of fast phase calcium uptake and endogenous norepinephrine release in rat brain region synaptosomes by ethanol.Brain Res.377, 18–28.PubMedGoogle Scholar
  79. 79.
    R. O. Messing, C. L. Carpenter, I. Diamond, and D. A. Greenberg (1986) Ethanol regulates calcium channels in clonal neural cells.Proc. Natl. Acad. Sci. USA83, 6213–6215.PubMedGoogle Scholar
  80. 80.
    S. N. Treistman and A. Wilson (1991) Effects of chronic ethanol on currents carried through calcium channels inAplysia. Alcohol. Clin. Exp. Res.15, 489–493.Google Scholar
  81. 81.
    M. H. Hawthorn, J. N. Ferrante, Y. W. Kwon, A. Rutledge, E. Luchowski, R. Bangalore, and D. J. Triggle (1992) Effect of an homologous series of aliphatic alcohols on neuronal and smooth muscle voltage-dependent Ca2+channels.Eur. J. Pharmacol.229, 143–148.PubMedGoogle Scholar
  82. 82.
    J. M. Littleton and H. J. Little (1988) Dihydropyridine-sensitive Ca2+channels in brain are involved in the central nervous system hyperexcitability associated with alcohol withdrawal states.Ann. NY Acad. Sci.522, 199–202.Google Scholar
  83. 83.
    M. E. Charness, R. P. Simon, and D. A. Greenberg (1989) Ethanol and the nervous system.N. Engl. J. Med.321, 442–454.PubMedGoogle Scholar
  84. 84.
    X. Gang, S. N. Treistman, A. Wilson, J. J. Nordmann, and J. R. Lemos (1993) Ca2+channels and peptide release from neurosecretory terminals.NIPS8, 64–68.Google Scholar
  85. 85.
    P J. Thorn, X. Wang, and J. R. Lemos (1991) A fast, transient K+current in neurohypophysial nerve terminals of the rat.J. Physiol. (Gond.)432, 283–312.Google Scholar
  86. 86.
    V. Anantharam, H. Bayley, A. Wilson, and S. Treistman (1992) Differential effects of ethanol on electrical properties of various potassium channels expressed in oocytes.Mol. Pharmacol.42, 499–505.PubMedGoogle Scholar
  87. 87.
    S. N. Treistman, M. M. Moynihan, and D. E. Wolf (1987) Influence of alcohols, temperature, and region on the mobility of lipids in neuronal membrane.Biochim. Biophys. Acta898, 109–120.PubMedGoogle Scholar
  88. 88.
    X. Wang, J. Lemos, G. Wang, and S. N. Treistman (1993) Ethanol inhibition of Ca channels is consistent with the interaction of a single drug molecule with a single target site.Soc. Neurosci. Abst.1757.Google Scholar
  89. 89.
    X. Wang, G. Wang, J. R. Lemos, and S. N. Treistman (1994) Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+channel in neurohypophysial terminals.J. Neurosci. (in press).Google Scholar
  90. 90.
    J. R. Lemos and M. C. Nowycky (1989) Two types of calcium channel coexist in peptide-releasing vertebrate nerve terminals.Neuron2, 1419–1426.PubMedGoogle Scholar
  91. 91.
    X. Wang, S. N. Treistman, and J. R. Lemos (1993) Single-channel recordings of N and L-type Ca2+currents in rat neurohypophysial terminals.J. Neurophysiol.70, 1617–1628.PubMedGoogle Scholar
  92. 92.
    J. Rotrosen, D. Mandio, D. Segarnick, L. J. Traficante, and S. Gershon (1980) Ethanol and prostaglandin E1: biochemical and behavioral interactions.Life Sci.26, 1867–1876.PubMedGoogle Scholar
  93. 93.
    R. A. Rabin and P. B. Molinoff (1983) Multiple sites of action of ethanol on adenylate cyclase.J. Pharmacol. Exp. Ther.227, 551–556.PubMedGoogle Scholar
  94. 94.
    G. R. Luthin and B. Tabakoff (1984) Activation of adenylate cyclase by alcohols requires the nucleotide-binding protein.J. Pharmacol. Exp. Ther.228, 579–587.PubMedGoogle Scholar
  95. 95.
    R. A. Rabin (1993) Ethanol-induced desensitization of adenylate cyclase: role of the adenosine receptor, and GTP-binding proteins.J. Pharmacol. Exp. Ther.264, 977–983.PubMedGoogle Scholar
  96. 96.
    A. J. Grant, G. Koski, and S. N. Treistman (1993) Effect of chronic ethanol on calcium currents and calcium uptake in undifferentiated PC 12 cells.Brain Res.600, 280–284.PubMedGoogle Scholar
  97. 97.
    D. Mullikin-Kilpatrick and S. N. Treistman (1994) Ethanol inhibition of L-type Ca2+channels in PC 12 cells: role of permeant ions.Eur. J. Pharmacol.270, 17–25.PubMedGoogle Scholar
  98. 98.
    A. C. Dolphin (1991) Regulation of calcium channel activity by GTP binding proteins and second messengers.Biochim. Biophys. Acta1091, 68–80.PubMedGoogle Scholar
  99. 99.
    K. J. Swartz (1993) Modulation of Ca2+channels by protein kinase C in rat central and peripheral neurons: disruption of G protein-mediated inhibition.Neuron 11,305–320.PubMedGoogle Scholar
  100. 100.
    S. L. Slater, C. Ho, F. J. Taddeo, M. B. Kelly, and C. D. Stubbs (1993) Contribution of hydrogen bonding to lipid—lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.Biochemistry32, 3714–3721.PubMedGoogle Scholar
  101. 101.
    D. M. Frazier, S. R. W. Louro, L. I. Horvath, K. W. Miller, and A. Watts (1990) Study of the effect of general anesthetics on lipid—protein interactions in acetylcholine receptor enriched membranes fromTorpedo nobilianausing nitroxide spin-labels.Biochemistry29, 2664–2669.Google Scholar
  102. 102.
    J. R. Trudell (1991) Role of membrane fluidity in anesthetic action, in Advances inMembrane Fluidity: Drug and Anesthetic Effects on Membrane Structure and Function. R.C. Aloia, ed. Wiley-Liss, New York, pp. 1–14.Google Scholar
  103. 103.
    J. B. Hoek, T. F. Taraschi, and E. Rubin (1988) Functional implications of the interaction of ethanol with biological membranes: actions of ethanol on hormonal signal transduction systems.Sem. Liver Dis.8, 3646.Google Scholar
  104. 104.
    R. Trudell (1977) A unitary theory of anesthesia based on lateral phase separations in nerve membranes.Anesthesiology46, 5–10.PubMedGoogle Scholar
  105. 105.
    B. Hille (1992)Ionic Channels of Excitable Membranes.Sinauer Assoc. Inc., Sunderland, MA.Google Scholar
  106. 106.
    R. Landgraf (1992) Central release of vasopressin: stimuli, dynamics, consequences, inProgress in Brain Researchvol. 91. A. Ermisch, R. Landgraf, and H.-J. Ruhle, eds. Elsevier, B.V., Amsterdam, The Netherlands, pp.29–39.Google Scholar
  107. 107.
    P. Camacho-Nasi and S. N. Treistman (1987) Ethanol-induced reduction of neuronal calcium currents: an explanation of possible mechanisms.Cell Mol. Neurobiol.7, 191–207.Google Scholar
  108. 108.
    S. N. Treistman and A. Wilson (1987) Effects of ethanol on early potassium currents in Aplysia: cell specificity and influence of channel state.J. Neurosci.7,3207–3214.PubMedGoogle Scholar
  109. 109.
    E. Neher and B. Sackmann (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres.Nature (Lund.)260, 779–802.Google Scholar
  110. 110.
    F. J. Sigworth and E. Neher (1980) Single Na+channel currents observed in cultured rat muscle cells.Nature287, 447–449.PubMedGoogle Scholar
  111. 111.
    F. J. Sigworth (1986) The patch clamp is more useful than anyone had expected.Fed. Proc.45, 2673–2678.PubMedGoogle Scholar
  112. 112.
    E. Neher and B. Sackmann, eds. (1983)Single-Channel Recording.Plenum, New York.Google Scholar
  113. 113.
    E. S. Levitan and R. H. Kramer (1992) Neuropeptide modulation of single calcium and potassium channels detected with a new patch clamp configuration.Nature348, 545–547.Google Scholar
  114. 114.
    M. Lindau, E. L. Stuenkel, and J. J. Nordmann (1992) Depolarization, intracellular calcium and exocytosis in single vertebrate nerve endings.Biophys. J.61, 19–30.PubMedGoogle Scholar
  115. 115.
    G. Dayanithi, N. Martin-Moutot, S. Barlier, D. A. Colin, M. Kretz-Zaepfel, F. Couraud, and J. J. Nordmann (1988) The calcium channel antagonist coo-conotoxin inhibits secretion from peptidergic nerve terminals.Biochim. Biophys. Res. Commun.156, 255–262.Google Scholar
  116. 116.
    C. B. Gundersen and J. A. Umbach (1992) Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel.Neuron9, 527–537.PubMedGoogle Scholar
  117. 117.
    K. Itagaki, W. J. Koch, I. Bodi, U. Klockner, D. F. Slish, and A. Schwarz (1992) Native-type DHP-sensitive calcium channel currents are produced by cloned rat aortic smooth muscle and cardiac alpha 1 subunits expressed inXenopus laevisoocytes and are regulated by alpha-2 and beta-subunits.FEBS Lett.297, 221–225.PubMedGoogle Scholar
  118. 118.
    H. L. Kim, H. Kim, P. Lee, R. G. King, and H. Chin (1992) Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel alpha 2 subunit.Proc. Natl. Acad. Sci. USA89, 3251–3255.PubMedGoogle Scholar
  119. 119.
    T. Niidome, M. S. Kim, T. Frierich, and Y. Mori (1992) Molecular cloning and characterization of a novel calcium channel from rabbit brain.FEBS Lett.308, 7–13.PubMedGoogle Scholar
  120. 120.
    P. A. Powers, S. Liu, K. Hogan, and R. G. Gregg (1992) Skeletal muscle and brain isoforms of a beta-subunit of human voltage-dependent calcium channels are encoded by a single gene.J. Biol. Chem.267,22967–22972.PubMedGoogle Scholar
  121. 121.
    M. E. Williams, D. H. Feldman, A. F. McCue, R. Brenner, G. Velicelebi, S. B. Ellis, and M.M. Harpold (1992) Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype.Neuron8, 71–84.PubMedGoogle Scholar
  122. 122.
    A. Castellano, X. Wei, L. Birnbaumer, and E. Perez-Reyes (1993) Cloning and expression of a neuronal calcium channel beta subunit. J. Biol. Chem 268 12359–12366.PubMedGoogle Scholar
  123. 123.
    T. Collin, J. J. Wang, J. Nargeot, and A. Schwartz. (1993) Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart.Circ. Res.72, 1337–1344.PubMedGoogle Scholar
  124. 124.
    W. A. Horne, P. T. Ellinor, I. Inman, M. Zhou, R. W. Tsien, and T. L. Schwarz (1993) Molecular diversity of Ca2+channel alpha 1 subunits from the marine ray Discopyge ommata.Proc. Natl. Acad. Sci. USA90, 3787–3791.PubMedGoogle Scholar
  125. 125.
    D. Schultz, G. Mikala, A. Yatani, D. B. Engle, D. E. Iles, B. Segers, R. J. Sinke, D. O. Weghuis, U. Klockner, M. Wakamori, J. J. Wang, D. Melvin, G. Vasodi, and A. Schwartz (1993) Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart.Proc. Nat!. Acad. Sci. USA90, 6228–6232.PubMedGoogle Scholar
  126. 126.
    V. Anantharam and S. N. Treistman (1992) Effects of ethanol on neuronal voltage-gated ion channels, inAlcohol and Neurobiology. Receptors Membranes and Channels. R. R. Watson, ed. CRC, Boca Raton, FL, pp. 269–302.Google Scholar
  127. 127.
    H. A. Hartmann, G. E. Kirsch, J. A. Drewe, M. Taglialatela, R. H. Joho, and A. M. Brown (1991) Exchange of conducting pathways between two related K’ channels.Science251, 942.PubMedGoogle Scholar
  128. 128.
    A. J. Yool and T. L. Scwarz (1991) Alteration of ionic selectivity of a K+channel by mutation of the H5 region.Nature (Lond.)349, 700–704.Google Scholar
  129. 129.
    A. S. Yu, S.C. Hebert, B. M. Brenner, and J. Lytton (1992) Molecular characterization and nephron distribution of a family of transcripts encoding the pore-forming subunit of Ca2+channels in the kidney.Proc. Natl. Acad. Sci. USA89, 10494–10498.PubMedGoogle Scholar
  130. 130.
    V. J. Auld, A. L. Goldin, D. S. Krafte, W. A. Catterall, H. A. Lester, N. Davidson, and R. J. Dunn (1990) A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel.Proc. Natl. Acad. Sci. USA87, 323–327.PubMedGoogle Scholar
  131. 131.
    J. R. Moorman, G. E. Kirsch, A. M. Brown, and R. H. Joho (1990) Changes in sodium channel gating produced by point mutations in a cytoplasmic linker.Science250, 688–691.PubMedGoogle Scholar
  132. 132.
    G. A. Loper, Y. N. Jan, and L. Y. Jan (1991) Hydrophobic substitution mutations in the S4 sequence alters voltage-dependent gating in the Shaker K’ channels.Neuron7, 327.Google Scholar
  133. 133.
    K. McCormack, M. A. Tanouye, L. E. Iverson, J.-W. Lin, M. Ramaswami, T. McCormack, J. T. Campanelli, M. K. Mathew, and B. Rudy (1991) A role for hydrophobic residues in the voltage-dependent gating of Shaker K’ channels.Proc. Natl. Acad. Sci. USA88, 2931–2935.PubMedGoogle Scholar
  134. 134.
    D. M. Papazian, L. C. Timpe, Y. N. Jan, and L. Y. Jan (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence.Nature (Lond.)349, 305–310.Google Scholar
  135. 135.
    E. Perez-Reyes, A. Castellano, H. S. Kim, P. Bertrand, and E. Baggstrom, A. E. Lacerda, X. Y. Wei, and L. Birnbaumer (1992) Cloning and expression of a cardiac/ brain beta subunit of the L-type calcium channel.J. Biol. Chem.267, 1792–1797.PubMedGoogle Scholar
  136. 136.
    N. M. Soldatov (1992) Molecular diversity of L-type Caz+ channel transcripts in human fibroblasts.Proc. Natl. Acad. Sci. USA89, 4628–4632.PubMedGoogle Scholar
  137. 137.
    A. Castellano, X. Wei, L. Birnbaumer, and E. Perez-Reyes (1993) Cloning and expression of a third calcium channel beta subunit.J. Biol. Chem.268, 3450–3455.PubMedGoogle Scholar
  138. 138.
    T. W. Soong, A. Stea, C. D. Hodson, S. J. Dubel, S. R. Vincent, and T. P. Snutch (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family.Science260, 1133–1136.PubMedGoogle Scholar
  139. 139.
    W. Stuhmer, F. Conti, H. Susuki, X. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa (1989) Structural parts involved in activation and inactivation of the sodium channel.Nature (Lond.)339, 597–603.Google Scholar
  140. 140.
    T. Hoshi, W. N. Zagotta, and R. W. Aldrich (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation.Science250, 533–538.PubMedGoogle Scholar
  141. 141.
    A. M. VanDongen, G. C. Frech, J. A. Drewe, R. A. Joho, and A. M. Brown (1990) Alteration and restoration of K channel function by deletions at the N- and C-termini.Neuron5, 433.PubMedGoogle Scholar
  142. 142.
    W. N. Zagotta, T. Hoshi, and R. W. Aldrich (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB.Science250, 568–571.PubMedGoogle Scholar
  143. 143.
    R. MacKinnon, L. Heginbotham, and T. Abramson (1990) Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor.Neuron5, 767.PubMedGoogle Scholar
  144. 144.
    G. Yellen, M. E. Jurman, T. Abramson, and R. MacKinnon (1991) Mutations affecting internal blockade identify the probable pore-forming region of a potassium channel.Science251, 939.PubMedGoogle Scholar
  145. 145.
    S.J. Dubel, T. V. Starr, J. Hell, M. K. Ahlijanian, J. J. Enyeart, W. A. Catterall, and T. P. Snutch (1992) Molecular cloning of the alpha-1 subunit of an omega-conotoxin sensitive calcium channel.Proc. Nat!. Acad. Sci. USA89, 5058–5062.PubMedGoogle Scholar
  146. 146.
    U. Klockner, K. Itagaki, I. Bodi, and A. Schwartz (1992) Beta-subunit expression is required for cAMP-dependent increase of cloned cardiac and vascular calcium channel currents.Pflugers Arch. Eur. J. Physiol.420, 413–415.Google Scholar
  147. 147.
    D. Singer-Lahat, E. Gershon, I. Lotan, R. Hullin, M. Biel, V. Flockerzi, F. Hofman, and N. Dascal (1992) Modulation of cardiac Ca2+channels inXenopusoocytes by protein kinase C.FEBS Lett.306, 113–118.PubMedGoogle Scholar
  148. 148.
    F. Fournier, P. Charnet, E. Bourinet, C. Vilbert, F. Matifat, G. Charpentier, P. Navarre, G. Brute, and D. Marlot (1993) Regulation by protein kinase-C of putative P-type Ca channels expressed inXenopusoocytes from cerebellar mRNA.FEBS Leu.317, 118–124.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Alejandro M. Dopico
  • José R. Lemos
  • Steven N. Treistman

There are no affiliations available

Personalised recommendations