Skip to main content

β-Cell Receptors

Mechanisms of Signal Transduction

  • Chapter
Book cover Molecular Biology of Diabetes

Abstract

The secretion of insulin is closely regulated in vivo in order to maintain the plasma glucose concentration in a narrow range despite long periods of fasting and intermittent food intake. The regulation of insulin secretion has been studied extensively and involves a complex interaction of glucose and other nutrients, and endocrine, paracrine, and neurohumoral factors. The effects of these factors on insulin secretion are transduced by their interaction with specific receptor molecules on the surface of the β-cell. The physiologic role of many of these ligand-receptor interactions in altering insulin secretion has been clarified recently and their distal signaling mechanisms characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rajan AS, Aguilar-Bryan L, Nelson DA, Yaney GC, Hsu WH, Kunze DL, et al.: Ion channels and insulin secretion. Diabetes Care 13:340–363, 1990.

    Article  Google Scholar 

  2. Boyd AE, Aguilar-Bryan L, Bryan J, Kunze D, Moss LG, Nelson DA, et al.: Sulfonylurea signal transduction. Rec Prog Horm Res 47:299–317, 1991.

    Google Scholar 

  3. Aguilar-Bryan L, Nichols C, Rajan A, Parker C, Bryan J: Co-expression of Sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14, 934-14, 940, 1992.

    Google Scholar 

  4. Maletti M, Portha B, Carlquist M, Kergoat M, Laburthe M, Marie J, et al.: Evidence for and characterization of specific high affinity binding sites for the gastric inhibitory polypeptide in pancreatic β cells. Endocrinology 115:1324–1331, 1984.

    Article  Google Scholar 

  5. Goke R, Cole T, Conlon J: Characterization of the receptor for glucagon-like peptide-l(7–37)amide on plasma membranes from rat insulinoma-derived cells by covalent cross-linking. J Mol Endocrinol 2:93–98, 1989.

    Article  Google Scholar 

  6. Dillon JS, Tanizawa T, Wheeler MB, Leng X-H, Ligon BB, Rabin DU, et al.: Cloning and functional expression of the human glucagon-like peptide-1 (GLP-1) receptor. Endocrinology 133:1907–1916, 1993.

    Article  Google Scholar 

  7. Thorens B: 1992 Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 89:8641–8645.

    Google Scholar 

  8. Lu M, Wheeler M, Leng X-H, Boyd AE: The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide 1(7–37). Endocrinology 132:94–100, 1993.

    Article  Google Scholar 

  9. Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF: Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84:3434–3438, 1987.

    Article  Google Scholar 

  10. Wheeler M, Lu M, Dillon J, Leng X-H, Chen C, Boyd AE: Functional expression of the glucagon-like peptide-1(7–37) receptor: evidence for coupling to phospholipase C as well as adenylyl cyclase. Endocrinology 133:57–62, 1993.

    Article  Google Scholar 

  11. Lu M: Signal transduction of the endogenous and recombinant glucagon-like peptide 1(7–37) receptor. Baylor College of Medicine: PhD Thesis in Cell Biology, 1993.

    Google Scholar 

  12. Fehmann HC, Habener JF: Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166, 1992.

    Article  Google Scholar 

  13. Jelinek LJ Lok, S., Rosenberg, G.B., Smith, R.A., Grant, F.J., Biggs, S., et al.: Expression cloning and signaling properties of the rat glucagon receptor. Science 259:1614–1616, 1993.

    Article  Google Scholar 

  14. Amatruda T, Gerard N, Gerard C, Simon M: Specific interactions of chemoattractant factor receptors with G-proteins. J Biol Chem 14:10, 139-10, 144, 1993.

    Google Scholar 

  15. Wolf B, Florholmen J, Turk J, McDaniel M: Studies of the calcium requirement for glucose and carbachol induced augmentation of inositol trisphosphate and inositol tetrakisphosphate accumulation in digitonin per-meabilized islets. J Biol Chem 263:3565–3575, 1988.

    Google Scholar 

  16. Zawalich W: Modulation of insulin secretion from β cells by phosphoinositide derived second messenger molecules. Diabetes 37:137–141, 1988.

    Article  Google Scholar 

  17. Lu M, Soltoff S, Yaney G, Boyd AE: The mechanisms underlying the glucose dependence of arginine vasopressin induced insulin secretion in β cells. Endocrinology 132:2141–2148, 1993.

    Article  Google Scholar 

  18. Metz S: Is protein kinase C required for physiologic insulin release. Diabetes 37:3–7, 1987.

    Article  Google Scholar 

  19. Li G, Pralong W, Pittet D, Mayr G, Schlegel W, Wollheim C: Inositol tetrakisphosphate isomers and elevation of cytosolic Ca2+ in vasopressin-stimulated insulin-secreting RlNm5F cells. J Biol Chem 267:4349–4356, 1992.

    Google Scholar 

  20. Martin S, Yule D, Dunne M, Gallacher D, Petersen O: Vasopressin directly closes ATP sensitive potassium channels evoking membrane depolarization and an increase in the free intracellular calcium concentration in insulin secreting cells. EMBO J 8:3595–3599, 1989.

    Google Scholar 

  21. Miralies P, Peiro E, Silvestre RA, Villanueva ML, Marco J: Effects of galanin on islet cell secretory responses to VIP, GIP, 8-CCK, and glucagon by the perfused rat pancreas. Met Clin Exp 37:766–770, 1988.

    Article  Google Scholar 

  22. Tajiri Y, Sako Y, Umeda F, Hisatomi A, Nawata H: Effect of galanin on arginine-stimulated pancreatic hormone release from isolated perifused rat islets. Horm Metab Res 22:1–6, 1990.

    Article  Google Scholar 

  23. Fehmann HC, Habener JF: Galanin inhibits proinsulin gene expression stimulated by the insulinotropic hormone glucagon-like peptide-I(7–37) in mouse insulinoma beta TC-1 cells. Endocrinology 130:2890–2896, 1992.

    Article  Google Scholar 

  24. Greenberg GR, McDonald TJ: Effect of galanin and vagal integrity on insulin release in dogs. Pancreas 3:122–127, 1988.

    Article  Google Scholar 

  25. Lindskog S, Ahren B: Effects of galanin on insulin and glucagon secretion in the rat. Int J Pancreatol 4:335–344, 1989.

    Google Scholar 

  26. Lindskog S, Ahren B: Galanin and pancreastatin inhibit stimulated insulin secretion in the mouse: comparison of effects. Horm Res 29:237–240, 1988.

    Article  Google Scholar 

  27. Yoshimura T, Ishizuka J, Greeley GJ, Thompson JC: Effect of galanin on glucose-, arginine-, or potassium-stimulated insulin release. Am J Physiol 256:E619–E623, 1989.

    Google Scholar 

  28. Ahren B, Ar’Rajab A, Bottcher G, Sundler F, Dunning BE: Presence of galanin in human pancreatic nerves and inhibition of insulin secretion from isolated human islets. Cell Tis Res 264:263–267, 1991.

    Article  Google Scholar 

  29. McKnight GL, Karlsen AE, Kowalyk S, Mathewes SL, Sheppard PO, O’Hara PJ, et al.: Sequence of human galanin and its inhibition of glucose-stimulated insulin secretion from RIN cells. Diabetes 41:82–87, 1992.

    Article  Google Scholar 

  30. Lagny PI, Amiranoff B, Lorinet AM, Tatemoto K, Laburthe M: Characterization of galanin receptors in the insulin-secreting cell line Rin m 5F: evidence for coupling with a pertussis toxin-sensitive guanosine triphosphate regulatory protein. Endocrinology 124:2635–2641, 1989.

    Article  Google Scholar 

  31. Amiranoff B, Servin AL, Rouyer FC, Couvineau A, Tatemoto K, Laburthe M: Galanin receptors in a hamster pancreatic beta-cell tumor: identification and molecular characterization. Endocrinology 121:284–289, 1987.

    Article  Google Scholar 

  32. Sharp GW, Le M, Brustel Y, Yada T, Russo LL, Bliss CR, et al.: Galanin can inhibit insulin release by a mechanism other than membrane hyper-polarization or inhibition of adenylate cyclase. J Biol Chem 264:7302–7309, 1989.

    Google Scholar 

  33. Amiranoff B, Lorinet AM, Laburthe M: Galanin receptor in the rat pancreatic beta cell line Rin m 5F. Molecular characterization by chemical cross-linking. J Biol Chem 264:20, 714-20, 717, 1989.

    Google Scholar 

  34. deWeille J, Schmid AH, Fosset M, Lazdunski M: ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci USA 85:1312–1316, 1988.

    Article  Google Scholar 

  35. Drews G, Debuyser A, Nenquin M, Henquin JC: Galanin and epinephrine act on distinct receptors to inhibit insulin release by the same mechanisms including an increase in K+ permeability of the B-cell membrane. Endocrinology 126:1646–1653, 1990.

    Article  Google Scholar 

  36. Ahren B, Arkhammar P, Berggren PO, Nilsson T: Galanin inhibits glucose-stimulated insulin release by a mechanism involving hyperpolarization and lowering of cytoplasmic free Ca2+ concentration. Biochem Biophy Res Commun 140:1059–1063, 1986.

    Article  Google Scholar 

  37. Homaidan FR, Sharp GW, Nowak LM: Galanin inhibits a dihydropyridine-sensitive Ca2+ current in the RINm5f cell line. Proc Natl Acad Sci USA 88:8744–8748, 1991.

    Article  Google Scholar 

  38. Hsu W, Xiang H, Rajan A, Boyd AE: Activation of alpha 2 adrenergic receptors decreases calcium influx to inhibit insulin secretion in a hamster β cell line: an action mediated by guanosine triphosphate binding protein. Endocrinology 128:958–964, 1991.

    Article  Google Scholar 

  39. Hsu W, Xiang H, Rajan A, Kunze D, Boyd AE: Somatostatin inhibits insulin secretion by a G-protein mediated decrease in Ca2+ entry through voltage dependent Ca2+ channels in the beta cell. J Biol Chem 266:837–843, 1991.

    Google Scholar 

  40. Amiranoff B, Lorinet AM, Lagny PI, Laburthe M: Mechanism of galanin-inhibited insulin release. Occurrence of a pertussis-toxin-sensitive inhibition of adenylate cyclase. Eur J Biochem 177:147–152, 1988.

    Article  Google Scholar 

  41. Philippe J, Missotten M: Functional characterization of acAMP-responsive element of the rat insulin I gene. J Biol Chem 265:1465–1469, 1990.

    Google Scholar 

  42. Osterrieder W, Brum A, Hescheler J, Trautwein W: Injection of subunits of cAMP-dependent protein kinase into cardiac myocytes modulates calcium current. Nature 298:576–578, 1982.

    Article  Google Scholar 

  43. Ullrich S, Wollheim CB: Galanin inhibits insulin secretion by direct interference with exocytosis. FEBS Lett 247:401–404, 1989.

    Article  Google Scholar 

  44. Robertson RP, Seaquist ER, Walseth TF: G proteins and modulation of insulin secretion. Diabetes 40:1–6, 1991.

    Article  Google Scholar 

  45. Nilsson T, Arkhammar P, Rorsman P, Berggren PO: Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem 264:973–980, 1989.

    Google Scholar 

  46. Rokaeus A: Galanin: a newly isolated biologically active neuropeptide. Trends Neurosci 10:158–164, 1987.

    Google Scholar 

  47. Cormont M, Le M, Brustel Y, Van OE, Spiegel AM, Sharp GW: Identification of G protein alpha-subunits in RINm5F cells and their selective interaction with galanin receptor. Diabetes 40:1170–1176, 1991.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dillon, J.S., Lu, M., Wheeler, M.B., Boyd, A.E. (1994). β-Cell Receptors. In: Draznin, B., LeRoith, D. (eds) Molecular Biology of Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0241-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0241-7_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6677-8

  • Online ISBN: 978-1-4612-0241-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics