Vitamin D, Gene Expression, and Cancer

  • Hector F. DeLuca
Part of the Experimental Biology and Medicine book series (EBAM, volume 27)

Abstract

Classically, vitamin D was discovered because in its absence the disease rickets, osteomalacia, and hypocalcemic tetany resulted (1, 2). Clearly, vitamin D functions in the regulation of plasma calcium and plasma phosphorus, which in turn results in normal mineralization of the skeleton and the normal functioning of the neuromuscular junction. Vitamin D carries out these functions following its metabolism, as described below, to its active or hormonal form, i.e. 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). This hormone directly stimulates intestinal calcium transport and independently intestinal phosphate transport by mechanisms not yet fully understood (1, 2). In addition, 1,25-(OH)2D3 acts on the osteoblasts together with parathyroid hormone (PTH) to facilitate the mobilization of calcium from bone into the plasma compartment when required. More recently it has been demonstrated that 1,25-(OH)2D3 facilitates the reabsorption of calcium in the distal renal tubule in a mechanism also dependent upon the presence of the PTH (1-3). These actions result in an elevation of plasma calcium and phosphorus, resulting in normal mineralization of the skeleton and neuromuscular function (Figure 1).

Keywords

Phosphorus Serine Psoriasis Stein Osteosarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeLuca, H. F. The transformation of a vitamin into a hormone: The vitamin D story. The Harvey Lectures, Series 75, pp. 333–379. New York:Academic Press, 1981.Google Scholar
  2. 2.
    DeLuca, H. F. The vitamin D-calcium axis--1983. In: R.P. Rubin, G. B. Weiss, and J.W. Putney, Jr. (eds.), Calcium in Biological System, pp. 491–511. New York: Plenum, 1985.CrossRefGoogle Scholar
  3. 3.
    Yamamoto, M., Kawanobe, Y., Takahashi, H., Shimazawa, E., Kimura, S., and Ogata, E, Vitamin D deficiency and renal calcium transport in the rat. J. Clin. Invest., 74: 507–513, 1984.CrossRefGoogle Scholar
  4. 4.
    DeLuca, H. F. New concepts of vitamin D functions. In: H.E. Sauberlich and K.J. Machlin (eds.), Beyond Deficiency. New Views on the Function and Health Effects of Vitamins, vol. 669, pp. 59–69. The New York Academy of Sciences, New York, 1992.Google Scholar
  5. 5.
    Suda, T. The role of 1a,25-dihydroxyvitamin D3 in the myeloid cell differentiation. Proc. Soc. Exp. Biol. Med., 191: 214–220, 1989.Google Scholar
  6. 6.
    Usui, E., Noshiro, M., and Okuda, K. Molecular cloning of cDNA for vitamin D3 25-hydroxylase from rat liver mitochondria. FEBS Lett., 262: 135–138, 1990.CrossRefGoogle Scholar
  7. 7.
    Reeve, L., Tanaka, Y., and DeLuca, H. F. Studies on the site of 1,25dihydroxyvitamin D3 synthesisin vivo.J. Biol. Chem., 258: 3615–3617, 1983.Google Scholar
  8. 8.
    Shultz, T. D., Fox, J., Heath, H. III, and Kumar, R. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc. Natl. Acad. Sci. USA, 80: 1746–1750, 1983.CrossRefGoogle Scholar
  9. 9.
    Barbour, G. L., Coburn, J. W., Slatopolsky, E., Norman, A. W., and Horst, R. L. Hypercalcemia in an anephric patient with sarcoidosis; Evidence for extrarenal generation of 1,25-dihydroxyvitamin D. New Engl. J. Med., 305: 440–443,1981.Google Scholar
  10. 10.
    Adams, J. S., Gacad, M. A., Singer, F. R., and Sharma, O. P. Production of 1,25-dihydroxyvitamin D3 by pulmonary alveolar macrophages from patients with sarcoidosis. In: C.J. Johns (ed.), Tenth International Conference on Sarcoidosis and Other Granulomatous Disorders, vol. 465, pp. 587-. New York:New York Academy of Sciences, 1986.Google Scholar
  11. 11.
    Lohnes, D., and Jones, G. Side chain metabolism of vitamin D3 in osteosarcoma cell line UMR-106. Characterization of products. J. Biol. Chem., 262:14394–14401,1987.Google Scholar
  12. 12.
    DeLuca, H. F. The vitamin D story: A collaborative effort of basic science and clinical medicine. FASEB J., 2: 224–236,1988.Google Scholar
  13. 13.
    Stumpf, W.E., Sar, M., Reid, F.A., Tanaka, Y., and DeLuca, H. F. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science, 206: 1188–1190, 1979.CrossRefGoogle Scholar
  14. 14.
    Link, R., and DeLuca, H. F. The vitamin D receptor. In: P.M. Conn (ed.), The Receptors, vol. II, pp. 1–35. New York: Academic Press, 1985.Google Scholar
  15. 15.
    Barsony, J., Pike, J. W., DeLuca, H. F., and Manx, S. J. Immunocytology with microwave-fixed fibroblasts shows 1 a,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J. Cell Biol., 111: 2385–2395,1990.CrossRefGoogle Scholar
  16. 16.
    Dame, M. C., Pierce, E. A., Prahl, J. M., Hayes, C. E., and DeLuca, H. F. Monoclonal antibodies to the porcine intestinal receptor for 1,25dihydroxyvitamin D3: Interaction with distinct receptor domains. Biochemistry, 25: 4523–4534, 1986.CrossRefGoogle Scholar
  17. 17.
    Pike, J. W., Marion, S. L., Donaldson, C. A., and Haussier, M. R. Serum and monoclonal antibodies against the chick intestinal receptor for 1,25dihydroxyvitamin D3. J. Biol. Chem., 258:1289–1296, 1983.Google Scholar
  18. 18.
    Burmester, J. K., Wiese, R. J., Maeda, N., and DeLuca, H. F. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc. Natl. Acad. Sci. USA, 85: 9499–9502,1988.CrossRefGoogle Scholar
  19. 19.
    Baker, A. R., McDonnell, D. P., Hughes, M., Crisp, T. M., Mangelsdorf, D. J., Haussier, M. R., Pike, J. W., Shine, J., and O’Malley, B. W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc. Natl. Acad. Sci. USA, 85: 3294–3298,1988.CrossRefGoogle Scholar
  20. 20.
    Darwish, H., and DeLuca, H. F. Vitamin D-regulated gene expression. In: G.S. Stein, J.L. Stein, and J.B. Lian (eds.), Critical Reviews in Eukaryotic Gene Expression, vol. 3(2), pp. 89–116. Boca Raton, FL: CRC Press, 1993.Google Scholar
  21. 21.
    Li, Z., Prahl, J. M., Hellwig, W., and DeLuca, H. F. Immunoaffinity purification of active rat recombinant 1,25-dihydroxyvitamin D3 receptor. Arch. Biochem. Biophys. 310: 347–351, 1994.CrossRefGoogle Scholar
  22. 22.
    Wiese, R. J., Goto, H., Prahl, J. M., Marx, S. J., Thomas, M., Al-Aqeel, A., and DeLuca, H. F. Vitamin D-dependency rickets type II: Truncated vitamin D receptor in three kindreds. Mol. Cell. Endocrinol., 90: 197–201, 1993.Google Scholar
  23. 23.
    Malloy, P. J., Hochberg, Z., Tiosano, D., Pike, J. W., Hughes, M. R., and Feldman, D. The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J. Clin. Invest., 86: 2071–2079,1990.CrossRefGoogle Scholar
  24. 24.
    Brooks, M. H., Bell, N. H., Love, L., Stern, P. H., Orfei, E., Queener, S. F., Hamstra, A. J., and DeLuca, H. F. Vitamin D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. New Engl. J. Med., 298: 996–999,1978.Google Scholar
  25. 25.
    Ross, T. K., Darwish, H. M., and DeLuca, H. F. Molecular biology of vitamin D action. In: G. Litwack (ed.), Vitamins and Hormones, vol. 49, pp. 281–326. New York:Academic Press, 1994.Google Scholar
  26. 26.
    Umesono, K., Murakami, K. K., Thompson, C. C., and Evans, R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell, 65: 1255–1266, 1991.CrossRefGoogle Scholar
  27. 27.
    Zierold, C., Darwish, H. M., and DeLuca, H. F. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24hydroxylase gene. Proc. Natl. Acad. Sci. USA, 91: 900–902,1994.CrossRefGoogle Scholar
  28. 28.
    Ohyama, Y., Zono, K., Uchida, M., Shinki, T., Kato, S., Suda, T., Yamamoto, O., Noshiro, M., and Kato, Y. Identification of a vitamin D-responsive element in the 5’-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J. Biol. Chem., 269: 10545–10550, 1994.Google Scholar
  29. 29.
    Ross, T. K., Moss, V. E., Prahl, J. M., and DeLuca, H. F. A nuclear protein essential for binding of rat 1,25-dihydroxyvitamin D3 receptor to its response elements. Proc. Natl. Acad. Sci. USA, 89: 256–260,1992.CrossRefGoogle Scholar
  30. 30.
    Sone, T., Ozono, K., and Pike, J. W. A 55-kilodalton accessory factor facilitates vitamin D receptor DNA binding. Mol. Endocrinol., 5: 1578–1586,1991.Google Scholar
  31. 31.
    Kliewer, S. A., Umesono, K., Mangelsdorf, D. J., and Evans, R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signaling. Nature, 355: 446–449, 1992.CrossRefGoogle Scholar
  32. 32.
    Zhang, S. K., Hoffmann, B., Tran, P. B. V., Gaupner, G., and Pfahl, M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature, 355: 441–446, 1992.CrossRefGoogle Scholar
  33. 33.
    Ross, T. K., Darwish, H. M., Moss, V. E., and DeLuca, H. F. Vitamin D-influenced gene expression via a ligand-independent, receptor-DNA complex intermediate. Proc. Natl. Acad. Sci. USA, 90: 9257–9260, 1993.CrossRefGoogle Scholar
  34. 34.
    Brown, T. A., and DeLuca, H. F. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor: A primary event in 1,25- dihydroxyvitamin D3 action. J. Biol. Chem., 265: 10025–10029,1990.Google Scholar
  35. 35.
    Jurutka, P. W., Terpening, C. M., and Haussier, M. R. The 1,25dihydroxy-vitamin D3 receptor is phosphorylated in response to 1,25dihydroxyvitamin D3 and 22-oxacalcitriol in rat osteoblasts, and by casein kinase II, in vitro. Biochemistry, 32: 8184–8192,1993.CrossRefGoogle Scholar
  36. 36.
    Jurutka, P. W., Hsieh, J-C., MacDonald, P. N., Terpening, C. M., Haussier, C. A., Haussier, M. R., and Whitfield, G. K. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase ilin vitroand identification as a significant phosphorylation site in intact cells. J. Biol. Chem., 268: 6791–6799,1993.Google Scholar
  37. 37.
    Hsieh, J-C., Jurutka, P. W., Galligan, M. A., Terpening, C. M., Haussier, C. A., Samuels, D. W., Himizu, Y., Shimizu, N., and Haussier, M. R. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc. Natl. Acad. Sci. USA, 88: 9315–9319, 1991.CrossRefGoogle Scholar
  38. 38.
    Hsieh, J-C., Jurutka, P. W., Nakajima, S., Galligan, M. A., Haussier, C. A., Shimizu, Y., Himizu, N., Whitfield, G. K., and Haussier, M. R. Phosphorylation of the human vitamin D receptor by protein kinase C. Biochemical and functional evaluation of the serine 51 recognition site. J. Biol. Chem., 268: 15118–15126, 1993.Google Scholar
  39. 39.
    Brown, T. A., and DeLuca, H. F. Sites of phosphorylation and photoaffinity labeling of the 1,25-dihydroxyvitamin D3 receptor. Arch. Biochem. Biophys., 286: 466–472,1991.Google Scholar
  40. 40.
    Darwish, H. M., Burmester, J. K., Moss, V. E., and DeLuca, H. F. Phosphorylation is involved in transcriptional activation by the 1,25dihydroxyvitamin D3 receptor. Biochim. Biophys. Acta, 1167: 29–36, 1993.CrossRefGoogle Scholar
  41. 41.
    Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S., and Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1 a,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA, 78, 4990–4994,1981.CrossRefGoogle Scholar
  42. 42.
    Tanaka, H., Abe, E., Miyaura, C., Kuribayashi, T., Konno, K., Nishii, Y., and Suda, T. 1α,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60). The presence of a cytosol receptor and induction of differentiation. Biochem. J., 204: 713–719,1982.Google Scholar
  43. 43.
    Suda, T., Takahashi, N., and Martin, T. J. Modulation of osteociast differentiation. Endocrine Rev., 13: 66–80, 1992.Google Scholar
  44. 44.
    Eisman, J. A., Koga, M., Sutherland, R. L., Barkla, D. H., and Tutton, P. J. M. 1α,25-Dihydroxyvitamin D3 and the regulation of human cancer cell replication. Proc. Soc. Exp. Biol. Med., 191: 221–226,1989.Google Scholar
  45. 45.
    DeLuca, H. F. Application of new vitamin D compounds to disease. Drug News and Perspectives, 5: 87–92,1992.Google Scholar
  46. 46.
    Smith, E. L., Walworth, N. C., and Holíck, M. F. Effect of 1a,25dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J. Invest. Dermatol., 86: 709–714, 1986.CrossRefGoogle Scholar
  47. 47.
    Holick, M. F. 1,25-Dihydroxyvitamin D3 and the skin: A unique application for the treatment of psoriasis. Proc. Soc. Exp. Biol. Med., 191: 246–257,1989.Google Scholar
  48. 48.
    Frampton, R. J., Suva, L. J., Eisman, J. A., Findlay, D. M., Moore, G. E., Moseley, J. M., and Martin, T. J. Presence of 1,25-dihydroxyvitamin D3 receptors in established human cancer cell lines in culture. Cancer Res., 42:1116–1119,1982.Google Scholar
  49. 49.
    Sandgren, M., Danforth, L., Plasse, T. F., and DeLuca, H. F. 1,25Dihydroxyvitamin D3 receptors in human carcinomas: A pilot study. Cancer Res., 51, 2021–2024, 1991.Google Scholar
  50. 50.
    Eisman, J. A. 1,25-Dihydroxyvitamin D3 receptor and role of 1,25(OH)2D3 in human cancer cells. In: R. Kumar (ed.), Vitamin D, Chapter 14, pp. 365–382. Boston: Martinus Nijhoff, 1984.Google Scholar
  51. 51.
    Eisman, J. A., Barkla, D. H., and Tutton, P. J. M. Suppression of in vivo growth of human cancer solid tumor xenografs by 1,25-dihydroxyvitamin D3. Cancer Res., 47, 21–26,1987.Google Scholar
  52. 52.
    Anzano, M. A., Smith, J. M., Uskokovic, M. R., Peer, C. W., Mullen, L. T., Letterio, J. J., Welsh, M. C., Shrader, M. W., Logsdon, D. L., Drive, C. L., et al. 1 a,25-Dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24–5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat. Cancer Res., 54(7): 1653–1656, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Hector F. DeLuca
    • 1
  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations