Calcium and Magnesium in the Regulation of Smooth Muscle Function and Blood Pressure

The Ionic Hypothesis of Cardiovascular and Metabolic Diseases and Vascular Aging
  • Mario Barbagallo
  • Lawrence M. Resnick
Part of the Contemporary Endocrinology book series (COE, volume 1)


Calcium (Ca2+) is a unique cellular ion having a large intra-vs extracellular gradient (1:10,000) and playing a key role in mediating stimulus-contraction coupling in cardiac, skeletal, and vascular smooth muscle (VSM), as well as stimulus-secretion coupling in endocrine, neural, and renal tissues (1-8). Mechanistically, increasing myoplasmic free Ca2+ concentrations [Ca21, initiates contraction by binding to calmodulin, altering its tertiary structure, and promoting its binding to myosin light chain kinase (MLCK) (2), thereby removing the normal autoinhibition of this enzyme. Activation of MLCK begins a cascade of molecular rearrangements leading to myofilament shortening and contraction. Activated MLCK phosphorylates the light chain of myosin, stimulating its binding to actin filaments, resulting in fiber shortening and consequent contraction (3) (Fig.1). This [Caz+]ï initiated process is important in both depolarization-mediated and agonistmediated contraction.


Hypertensive Subject Myosin Light Chain Kinase Dietary Salt Dehydroepiandrosterone Sulfate Smooth Muscle Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ringer S. A third contribution regarding the infusion of the inorganic constituents of the blood on the ventricular contraction. J Physiol 1883;22:2–5.Google Scholar
  2. 2.
    Means AR, VanBerkum MFA, Bagchi I, Lu KP, Rasmussen CD. Regulatory functions of calmodulin. Pharmacol Ther 1991;50:255–270.PubMedCrossRefGoogle Scholar
  3. 3.
    Hai CM, Murphy RA. Ca’, crossbridge phosphorylation, and contraction. Annu Rev Physiol 1989;51:285–298.PubMedCrossRefGoogle Scholar
  4. 4.
    Hermsmeyer K, Sturek M, Rush NJ. Caz+channel modulation by dihidropyridines in VSM. Ann NY Acad Sci 1988;522:25–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Kitazawa T, Kobayashy S, Horiuty K, Somlyo AV, Somlyo AP. Receptor-coupled, permeabilized smooth muscle: role of phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca“. J Biol Chem 1989;264:5339–5342.PubMedGoogle Scholar
  6. 6.
    Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986;233:305–312.PubMedCrossRefGoogle Scholar
  7. 7.
    Iwasa Y, Hosey MM. Phosphorylation of cardiac sarcolemma proteins by the Caz+activated phospholipid dependent protein kinase. J Biol Chem 1984;259:534–540.PubMedGoogle Scholar
  8. 8.
    Nishikawa M, Hidaka H, Adelstein RS. Phosphorylation of smooth muscle heavy meromyosin by Ca“ activated, phospholipid dependent protein kinase. J Biol Chem 1983;258:14,069–14,072.PubMedGoogle Scholar
  9. 9.
    Griendling KK, Alexander RW. Angiotensin, other pressor, and the transduction of vascular smooth muscle contraction. In: Laragh JH, Brenner BM, eds. Hypertension, Pathophysiology, Diagnosis and Management, 2nd ed. Raven, New York, 1995, pp. 541–556.Google Scholar
  10. 10.
    Khalil RA, van Breeman C. Mechanisms of calcium mobilization and homeostasis in vascular smooth muscle and their relevance to hypertension. In: Laragh JH, Brenner BM, eds. Hypertension, Pathophysiology, Diagnosis and Management, 2nd ed. Raven, New York, 1995, pp. 523–539.Google Scholar
  11. 11.
    Eggermont JA, Vrolix M, Raeymaekers L, Wuytack F, Casteels R. Caz+transport ATPases of VSM. Circ Res 1988;62:266–278.PubMedCrossRefGoogle Scholar
  12. 12.
    Nabel EG, Berk BC, Brock TA, Smith TW. Na+-Ca“ exchange in cultured VSM cells. Cire Res 1988;62:486–489.CrossRefGoogle Scholar
  13. 13.
    Altura BM, Altura BT. Mgz+ions and contractions on VSMs: relationship to some vascular diseases. Fed Proc 1981;40:2672–2679.PubMedGoogle Scholar
  14. 14.
    Altura BM, Altura BT, Carella A, Turlapaty PDMV. Caz+coupling in VSM: Mg“ and buffer effects on contractility and membrane Caz+movements. Can J Physiol 1982;60:459–482.CrossRefGoogle Scholar
  15. 15.
    Altura BM, Altura BT. Mg“ and contractions of arterial smooth muscle. Microvasc Res 1974;7: 145–155.PubMedCrossRefGoogle Scholar
  16. 16.
    Woods WT, Katholi RE, Urthaler F, James TN. Electrophysiological effects of Mg“ on cells in the canine sinus node and false tendon. Circ Res 1979;44:182–188.PubMedCrossRefGoogle Scholar
  17. 17.
    Turlapaty PDMV, Altura BM. Extracellular Mg“ ions control Caz+ exchange and content of VSM. Eur J Pharmacol 1978;52:421–423.PubMedCrossRefGoogle Scholar
  18. 18.
    Rubin RP. The role of Caz+in the release of neurotransmitter substances and hormones. Pharmacol Rev 1970;22:389–427.PubMedGoogle Scholar
  19. 19.
    Resnick LM. Ionic basis of hypertension, insulin resistance, vascular disease and related disorders. The mechanism of “Syndrome X.” Am J Hypertens 1993;6:123S–134S.PubMedGoogle Scholar
  20. 20.
    Barbagallo M, Shan J, Pang PKT, Resnick LM. Glucose-induced alterations of [Ca2+]iin cultured rat tail artery VSM cells. J Clin Invest 1995;95:763–767.PubMedCrossRefGoogle Scholar
  21. 21.
    Resnick LM, Barbagallo M, Gupta RK, Laragh JH. Ionic basis of hypertension in diabetes mellitus: role of hyperglycemia. Am J Hypertens 1992;5:296–301.Google Scholar
  22. 22.
    Davis FB, Davis PJ, Gerard N, Blas S, MacGillivray S, Gutman S, Feldman J. The effect of in vivo glucose administration on human Ca-ATPase activity and on enzyme responsiveness in vitro to thyroid hormone and calmodulin. Diabetes 1985;34:639–646.PubMedCrossRefGoogle Scholar
  23. 23.
    Deziel MR, Safeer RS, Blas S, Davis FB, Davis PJ. Hexose-specific inhibition in vitro of human red cell Ca“-ATPase-ATP-ase activity. Biochem Biophys Acta 1992;1110:119–122.PubMedCrossRefGoogle Scholar
  24. 24.
    Draznin B, Leitner W, Sussman KE, Sherman N. Insulin and glucose modulate protein kinase C in rat adipocytes. Biochem Biophys Res Commun 1988;156:570–575.PubMedCrossRefGoogle Scholar
  25. 25.
    Vaugham-Jones RD, Lederer WJ, Eisner DA. Caz+ ions can affect intracellular pH in mammalian cardiac cells. Nature 1983;301:522–524.CrossRefGoogle Scholar
  26. 26.
    Barbagallo M, Gupta RK, Resnick LM. Cellular ionic effects of insulin in normal human red cells: a nuclear magnetic resonance study. Diabetologia 1993;36:146–149.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuriyama S, Nakamura K, Horiguchi M, Uchida H, Sakai O. Decreased insulin-sensitive Ca’ transport trans-port in cultured vascular smooth muscle cells from spontaneously hypertensive rats. Am J Hypertens 1992;5:892–895.PubMedGoogle Scholar
  28. 28.
    Standley PR, Zhang F, Ram JL, Zemel MB, Sowers JR. Insulin attenuates vasopressin-induced Cat+transient and a voltage-dependent Caz+response in rat VSM cells. J Clin Invest 1991;88:1230–1236.PubMedCrossRefGoogle Scholar
  29. 29.
    Resnick LM, Barbagallo M, Gupta RK, Laragh JH. Ionic effects of insulin in normal and hypertensive cells: an ionic definition of insulin resistance? Am J Hypertens 1994;7:61 (abstract).Google Scholar
  30. 30.
    Collip JB, Clark EP. Further studies on the physiological action of a parathyroid hormone. J Biol Chem 1925;64:485–491.Google Scholar
  31. 31.
    Charbon GA, Brummer F, Reneman RS. Diuretic and vascular action of parathyroid extracts in animals and in man. Arch Int Pharmacodyn Ther 1968;171:1–11.PubMedGoogle Scholar
  32. 32.
    Rosenthal FD, Roy S. Hypertension and hyperparathyroidism. Br Med J 1972;4:396–397.PubMedCrossRefGoogle Scholar
  33. 33.
    Massry SG, Iseky K, Campese VM. Serum Caz+, parathyroid hormone and blood pressure. Am J Nephrol 1986;6:19–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Bogin E, Massey SG, Harary L. Effect of parathyroid hormone on rat heart cells. J Clin Invest 1981;67:1215–1227.PubMedCrossRefGoogle Scholar
  35. 35.
    Pang PKT, Yang MCM, Shan J. Parathyroid hormone and Caz+entry blockade in vascular tissue. Life Sci 1988;42:1395–1400.PubMedCrossRefGoogle Scholar
  36. 36.
    Herrmann-Erlee MPM, Nijiweide PJ, Van der Meer JM, Ooms MA. Action of BPTH and bPTHfragments on embryonic bone in vitro: dissociation of the cyclic AMP and bone resorbing response. Calcif Tissue Int 1983;35:70–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Nickols GA. Increased cAMP in cultured VSM cells and relaxation of aortic strips by parathyroid hormone. Eur J Pharmacol 1985;116:137–144.PubMedCrossRefGoogle Scholar
  38. 38.
    Acceto R, Weder AB. Parathyroid hormone and verapamil inhibit Ne-v-pump in human erythrocytes. Clin Res 1987;35:437A.Google Scholar
  39. 39.
    De Luise M, Harker M. Parathyroid hormone stimulation of the Na+ K+pump in rat clonal osteosarcoma cells. J Endocrinol 1986;111:61–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Kahn AM, Zimmer RA, Navran SS. Parathyroid hormone inhibits Na+-H+exchange in cultured VSM cells. Kidney Intl 1988;33:298A.Google Scholar
  41. 41.
    Pang PKT, Yang MCM, Shew R, Tenner TE Jr. The vasorelaxant action of parathyroid hormone fragments on isolated rat tail artery. Blood Vessels 1985;22:57–64.PubMedGoogle Scholar
  42. 42.
    Benabe JE, Martinez-Maldonado M. Hypercalcemic nephropathy. Arch Intern Med 1978;138:777–779.PubMedCrossRefGoogle Scholar
  43. 43.
    Ogino K, Burkhoff D, Bilezekian JP. The hemodynamic basis for the cardiac effects of parathyroid hormone (PTH) and PTH-related protein. Endocrinology 1995;136(7):3024–3030.PubMedCrossRefGoogle Scholar
  44. 44.
    Lewanczuk RZ, Wang J, Zhang ZR, Pang PKT. Effects of spontaneously hypertensive rat plasma on blood pressure and tail artery Caz+ uptake in normotensive rats. Am J Hypertens 1989;2:26–31.PubMedGoogle Scholar
  45. 45.
    Pang PKT, Lewanczuk RZ. Parathyroid origin of a new circulating hypertensive factor in spontaneously hypertensive rats. Am J Hypertens 1989;2:898–902.PubMedGoogle Scholar
  46. 46.
    Shan J, Benishin CG, Lewanczuk RZ, Pang PKT. The mechanism of the vascular action of parathyroid hypertensive factor. J Cardiovasc Pharmacol 1994;23(Suppl. 2):S1.PubMedGoogle Scholar
  47. 47.
    Resnick LM, Lewanczuk RZ, Laragh JH, Pang PKT. Parathyroid hypertensive factor-like activity in human essential hypertension: relationship to plasma renin activity and dietary salt sensitivity. J Hypertens 1993;11:1235–1241.PubMedCrossRefGoogle Scholar
  48. 48.
    Barbagallo M, Gupta RK, Lewanczuk RZ, Pang PKT, Resnick LM. Serum mediated intracellular Caz+changes in normotensive and hypertensive red blood cells: role of parathyroid hypertensive factor (PHF). J Cardiovasc Phannacol 1994;23(Suppl. 2):514–517.Google Scholar
  49. 49.
    Lewanczuk RZ, Pang PKT. Expression ofparathyroid hormone in hypertensive primary hyperparathyroid patients. Blood Pressure 1993;2:22–27.PubMedCrossRefGoogle Scholar
  50. 50.
    Lind L, Ljunghall S. Hypertension, primary hyperparathyroidism and the parathyroid hypertensive factor. Blood Pressure 1993;2:4–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamaguchi M, Yoshida H. Participation of Caz+channel in liver regulation by calcitonin in rats. Acta Endocrinol 1985;110:239–243.PubMedGoogle Scholar
  52. 52.
    Resnick LM, Churchill PC, Churchill M, Laragh JH, Orlowsky R. The effects of calcitonin, calcitonin analogs, and calcitonin gene related peptide on basal, in vitro, renin secretion. Am J Hypertens 1989;2:453–457.PubMedGoogle Scholar
  53. 53.
    Resnick LM, Muller FB, Nicholson JP, Laragh JH. Calcitonin is a vasoactive hormone in hypertensive man. Clin Res 1984;32:523A.Google Scholar
  54. 54.
    Uddman R, Edvinsson L, Ekblad E, Hakanson Sundler F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept 1986;15:1–23.PubMedCrossRefGoogle Scholar
  55. 55.
    Gennari C, Fisher JA. Cardiovascular actions of calcitonin gene related peptide in humans. Calcif Tissue Int, 1985;37:581–584.PubMedCrossRefGoogle Scholar
  56. 56.
    Kline L, Pang PKT. Calcitonin gene-related peptide relaxed rat tail artery helical strips in vitro an intracellular Ca’-dependent manner. Eur J Pharmacol 1988;150:233–823.PubMedCrossRefGoogle Scholar
  57. 57.
    Hirata Y, Tagagi Y, Takata S, Fukuda Y, Yoshima H, Fujiita T. Calcitonin gene-related peptide receptor in cultured VSM and endothelial cells. Biochem Biophys Res Commun 1988;151:1113–1121.PubMedCrossRefGoogle Scholar
  58. 58.
    Walters MR, Wicker DC, Riggle PC. 1,25 Dihydroxyvitamin D3 receptors identified in the rat heart. J Mol Cell Cardiol 1986;18:67–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Merke J, Hoffman D, Goldschmidt H. Demonstration of 1,25 (OH) vitamin D receptors and action in VSM in vitro. Cale Tissue Int 1987;41:112–114.CrossRefGoogle Scholar
  60. 60.
    Kawashima H. Receptor for 1,25 dihydroxyvitamin D in a vascular cell line derived from rat aorta. Biochem Biophys Res Commun 1987;146:1–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Bukosky RD, Xue H. On the vascular inotropic action of 1,25 (OH)2vitamin D3. Am J Hypertens 1993;6(5 Part 1):388–396.Google Scholar
  62. 62.
    Shimosawa T, Ando K, Fujiita T. Enhancement of vasoconstrictor response by a noncalcemic analogue of vitamin D3. Hypertension 1993;21:253–258.PubMedCrossRefGoogle Scholar
  63. 63.
    Shan J, Resnick LM, Lewanczuk RZ, Karpinsky E, Pang PKT. 1,25 Dihydroxyvitamin D as a cardiovascular hormone: effects on Caz+ current and [Caz+]iin VSM cells. Am J Hypertens 1993;6: 983–988.PubMedGoogle Scholar
  64. 64.
    Bukosky RD, Xue H, McCarron DA. Effect of 1,25 (OH)2vitamin D3 and ionized Ca“, on45Ca uptake by primary cultures of aortic myocites of spontaneously hypertensive and Wistar-Kyoto normotensive rats. Biochem Biophys Res Commun 1988;152:1388–1394.CrossRefGoogle Scholar
  65. 65.
    Stumpf WE, Sar M, Amuller G. The heart a target organ for estradiol. Science 1977;196:319–321.PubMedCrossRefGoogle Scholar
  66. 66.
    Hardner DR, Coulson PB. BE2receptors and effect of ßE2 on membrane electrical properties of coronary VSM. J Cell Physiol 1979;100:375–382.CrossRefGoogle Scholar
  67. 67.
    Nakao J, Chang WC, Murota SI, Orimo H. Estradiol binding sites in rat aortic smooth muscle cells in culture. Atherosclerosis 1981;38:75–80.PubMedCrossRefGoogle Scholar
  68. 68.
    McGill HC, Sheridan PJ. Nuclear uptake of sex steroid hormones in the cardiovascular system of the baboon. Circ Res 1982;48:234–244.Google Scholar
  69. 69.
    Lin AL, Mc Gill HC, Shain SA. Hormone receptors of the baboon cardiovascular system. Biochemical characterization of aortic and myocardial cytoplasmic P receptors. Circ Res 1982;50:610–616.PubMedCrossRefGoogle Scholar
  70. 70.
    Horowitz KB, Horowitz LD. Canine vascular tissues are targets for androgens,13E2s, progestins and glucocorticoids. J Clin Invest 1982;69:750–758.CrossRefGoogle Scholar
  71. 71.
    Raddino R, Poli E, Pela G, Manca C. Action of steroid sex hormones on the isolated rabbit heart. Pharmacology 1989;38:185–190.PubMedCrossRefGoogle Scholar
  72. 72.
    McCalden TA. The inhibitory action of estradiol 1713 and P on venous smooth muscle. Br J Pharmacol 1975;53:183–192.PubMedCrossRefGoogle Scholar
  73. 73.
    Altura BM, Altura BT. Influence of sex hormones, oral contraceptives and pregnancy on vascular muscle and its reactivity. In: Carrier O, Shibata S, eds. Factors Influencing Vascular Reactivity. IgakuShoin, New York, 1977, pp. 221–254.Google Scholar
  74. 74.
    Shan J, Resnick LM, Liu. Q, Wu X, Barbagallo M, Pang PKT. Vascular effect of 1713 estradiol in male SD rats. Am J Physiol 1994;266:H967–H973.PubMedGoogle Scholar
  75. 75.
    Zhang F, Ram JL, Standley PR, Sowers JR. 1713-estradiol attenuates voltage-dependent Caz+ current in rat vascular smooth muscle cell. Am J Physiol 1994;6:C1–C6.Google Scholar
  76. 76.
    Barbagallo M, Shan J, Pang PKT, Resnick LM. Vascular effects of P: role intracellular Cat+metabolism. Am J Hypertens 1995;8(Part 2):66A.CrossRefGoogle Scholar
  77. 77.
    Peuler JD, Ravi J, Boggaram B, Sowers JR. Insulin blocks accentuation of adrenergic tone by dihydrotestosterone. Am J Hypertens 1995;8(4):54 (abstract).CrossRefGoogle Scholar
  78. 78.
    Clark TP, Kemppainen RJ. Glucocorticoid do not affect intracellular Caz+transients in corticotrophs: evidence supporting effect distal to Caz+influx. Neuroendocrinology 1994;60:273–282.PubMedCrossRefGoogle Scholar
  79. 79.
    Orentreich N, Brind JL, Rizer RL, Vogelamn JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 1984;59:551–555.PubMedCrossRefGoogle Scholar
  80. 80.
    Yamaji T, Ibayashi H. Plasma dehydroepiandrosterone sulfate in normal and pathological conditions. J Clin Endocrinol Metab 1969;29:273–278.PubMedCrossRefGoogle Scholar
  81. 81.
    Marmoston J, Griffith GC, Geller PJ, Fishman EL, Welsch F, Weiner JM. Urinary steroids in the measurement of aging and atherosclerosis. J Am Geriatr Soc 1975;23:481–492.Google Scholar
  82. 82.
    Barret-Connor E, Khaw KT, Yen SSC. A prospective study of dehydroepiandrosterone sulfate, mortality and cardiovascular disease. N Engl J Med 1986;315:1519–1524.CrossRefGoogle Scholar
  83. 83.
    Gordon GB, Bush DE, Weishman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone. J Clin Invest 1988;82:712–720.PubMedCrossRefGoogle Scholar
  84. 84.
    Arad Y, Badimon JO, Hembrec W, Ginsberg HN. Dehydroepiandrosterone feedings prevents aortic fatty stream formation and cholesterol accumulation in cholesterol-fed rabbit. Arteriosclerosis 1989;9:159–166.PubMedCrossRefGoogle Scholar
  85. 85.
    Eich DM, NestlerJE, Johson DE, Dworkin GH, Daijin K, Wechsler, Hess ML. Inhibition of accelerated coronary atherosclerosis with dehydroepiandrosterone in the heterotopic rabbit model of cardiac transplantation. Circulation 1993;87:261–269.PubMedCrossRefGoogle Scholar
  86. 86.
    Shafagoj Y, Opoku J, Quereshi D, Regelson W, Kalimi M. Dehydroepiandrosterone prevents dexamethasone-induced hypertension in rats. Am J Physiol 1992;203:E210–E213.Google Scholar
  87. 87.
    Barbagallo M, Shan J, Pang PKT, Resnick LM. Effects of dehydroepiandrosterone sulfate on cellular calcium responsiveness and vascular contractility. Hypertension 1995;26:1065–1069.PubMedCrossRefGoogle Scholar
  88. 88.
    Resnick LM, Gupta RK, Bhargava KK, Gruenspan H, Alderman MH, Laragh JH. Cellular ions in hypertension, diabetes, and obesity: a nuclear magnetic resonance spectroscopic study. Hypertension 1991;17:951–957.PubMedCrossRefGoogle Scholar
  89. 89.
    Resnick LM, Gupta RK, Gruenspan H, Alderman MH, Laragh JH. Hypertension and peripheral insulin resistance: mediating role of intracellular free Mg“. Am J Hypertens 1990;3:373–379.PubMedCrossRefGoogle Scholar
  90. 90.
    Altura BM, Altura BT. Mg“ deficiency and hypertension: correlation between Mg’-deficient diets and microcirculatory changes in situ. Science 1984;223:1315–1317.PubMedCrossRefGoogle Scholar
  91. 91.
    Nadler JL, Buchanan T, Natarajan R, Antonipillai I, Bergman R, Rude R. MgZ+ deficiency produces insulin resistance and increased tromboxane synthesis. Hypertension 1993;21:1024–1029.PubMedCrossRefGoogle Scholar
  92. 92.
    Barbagallo M, Gupta RK, Resnick LM. Cellular ion in diabetic hypertension: relation to hyperglycemia and cardiac hypertrophy. Hypertension 1995;25:1358.Google Scholar
  93. 93.
    Draznin B, Sussman KE, Eckel R, Kao M, Yost T, Sherman NA. Possible role of [Ca2+]iconcentration in mediating insulin resistance of obesity and hyperinsulinemia. J Clin Invest 1988;82:1848–1852.PubMedCrossRefGoogle Scholar
  94. 94.
    Resnick LM, Gupta RK, Di Fabio B, Barbagallo M, Marion R, Laragh JH. Intracellular ionic consequences of dietary salt loading in essential hypertension. J Clin Invest 1994;94:1269–1276.PubMedCrossRefGoogle Scholar
  95. 95.
    Resnick LM, Gupta RK, Gruenspan H, Laragh JH. Intracellular ion response to glucose tolerance: Relation of hypertension, obesity and insulin resistance. Circulation 1988;78(Suppl. II):II-570.Google Scholar
  96. 96.
    Levy J, Gavin J Jr III, Sowers JR. Diabetes mellitus: a disease of abnormal cellular calcium metabolism? Am J Med 1994;96:260–273.PubMedCrossRefGoogle Scholar
  97. 97.
    Barbagallo M, Resnick LM, Sosa RE, Corbett ML, Laragh JH. Renal divalent cation excretion in secondary hypertension. Clin Sci 1992;83:561–565.PubMedGoogle Scholar
  98. 98.
    McCarron DA, Pingree PA, Rubin RJ, Gaucher SM, Molitch M, Krutzik S. Enhanced parathyroid function in essential hypertension: a homeostatic response to a urinary CaZ+ leak. Hypertension 1980;2:162–168.PubMedCrossRefGoogle Scholar
  99. 99.
    Barbagallo M, Gupta RK, Resnick LM. Effect of aging on cellular divalent cations: relation to hypertension and diabetes. J Invest Med 1995;43(Suppl. 2):300A.Google Scholar
  100. 100.
    Sachidinis A, Mengden T, Locher R, Brunner C, Vetter W. Novel cellular activities for low density lipoprotein in VSM cells. Hypertension 1990;15:704–711.CrossRefGoogle Scholar
  101. 101.
    Orimo H, Ouchi Y. The role of Ca’ and Mg“ in the development of atherosclerosis. Experimental and clinical evidence. Ann NY Acad Sci 1990;598:444–457.PubMedCrossRefGoogle Scholar
  102. 102.
    Sen L, Biasecky RA, Smith E, Smith TW, Colucci W. Cholesterol increases the L-type voltage-sensitive Ca“ channel current in arterial smooth muscle cells. Circ Res 1992;71:1008–1014.PubMedCrossRefGoogle Scholar
  103. 103.
    Altura BT, Brust M, Bloom S, Barbour RL, Stempack JG, Altura BM. MgZ+dietary intake modulates blood lipid levels and atherogenesis. Proc Natl Acad Sci USA 1990;87:1840–1844.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Mario Barbagallo
  • Lawrence M. Resnick

There are no affiliations available

Personalised recommendations