Advertisement

The Future of DNA Sequencing: Methods and Applications

  • Charles R. Cantor
  • Natalia Broude
  • Takeshi Sano
  • Marek Przetakiewicz
  • Cassandra L. Smith

Abstract

The Human Genome Project entails the determination of the DNA sequence of a set of samples that will represent a single human genome. The identity of the particular base, A, T, C or G, at each position along 24 pieces of DNA encompassing one example of each of the human (H. sapiens) chromosomes, will be revealed. A total of about 3 billion bases will be identified. Along the way, the DNA sequence of several model genomes will be determined including a worm, C. elegans, a fly, D. melanogaster, a yeast, S. cerevisiae, and a bacterium, E. coli. All of these model genomes together amount to less than 20% of one human genome. In addition, depending on the efficiency and cost of the methods finally employed for most of the sequencing, we will also see revealed some or all of the DNA sequence of the common laboratory mouse, M. musculus. It is clear that, with the technology currently in hand, it will be possible to obtain the set of fragments needed for this DNA sequencing effort (this process is called physical mapping) and then read the sequence of each of these fragments for a total cost approximating the original estimate of $3 billion.

Keywords

Human Genome Project Model Genome Single Molecule Sequencing Stable Metal Isotope Single Human Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Soares, M. F. Bonaldo, P. Jenlenc, L. Lawton and A. Estradiadis, Proc. Natl Acad. Sci. USA 1994, 91, 9228–9232.CrossRefGoogle Scholar
  2. 2.
    M. D. Adams, J. M. Kelley, J. D. Gocayne, M. Dubrick, M. H. Polymeropuolos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, A. R. Kerlavage, W. R. McCombie and J. C. Venter, Science 1991, 252, 1651–1656.CrossRefGoogle Scholar
  3. 3.
    G. J. Annas, New Eng. J. Med. 1992, 326, 1641–1644.CrossRefGoogle Scholar
  4. 4.
    E. Blake, J. Mihalovich, R. Higuchi, P.S. Walsh and H. Erlich, J. Forens. Sci. 1992, 37, 700–726.Google Scholar
  5. 5.
    C. T. Comey, B. Budowle, D. E. Adams, A. L. Baumstark, J. Lindsey and L.A. Presley, J. Forens. Sci. 1993, 38, 239–249.Google Scholar
  6. 6.
    R. Cathcart, Nature 1990, 347, 310.CrossRefGoogle Scholar
  7. 7.
    H. Kasai, S. Isono, M. Kitakawa, J. Mineno, H. Akiyama, D. M. Kurnit, D. E. Berg, and K. Isono, Nucleic Acids Res. 1992, 20, 6509–6515.CrossRefGoogle Scholar
  8. 8.
    G. Wang, R. W. Blakesly, D. E. Berg and C. M. Berg, Proc. Natl. Acad. Sci. USA 1993, 90, 6509–6515.Google Scholar
  9. 9.
    J. Kieleczawa, J. J. Dunn and F. W. Studier, Science 1992, 258, 1787–1791.CrossRefGoogle Scholar
  10. 10.
    H. Voss, S. Wiemann, D. Grothues, D. Sensen, J. Zimmermann, C. Schwager, J. Stegeman, H. Erfle, T. Rupp and W. Ansorge, Biotechniques 1993, 15, 714–721.Google Scholar
  11. 11.
    R. L. Brumley, Jr. and L. M. Smith, Nucleic Acids Res. 1991, 19, 4121–4126.CrossRefGoogle Scholar
  12. 12.
    S. Carson, A. S. Cohen, A. Belenkii, M. C. Ruiz-Martinez, J. Berka and B. L. Karger, Anal. Chem. 1993, 56, 3219–3226.Google Scholar
  13. 13.
    X. C. Huang, M. A. Quesada and R. A. Mathies, Anal. Chem. 1992, 64, 2149–2154.Google Scholar
  14. 14.
    J. A. Luckey, H. Drossman, T. Kostichka and L. M. Smith, Meth. Enzymol. 1993, 218, 154–172.CrossRefGoogle Scholar
  15. 15.
    R. Drmanac, S. Drmanac, Z. Strezoska, T. Paunesku, I. Labat, M. Zeremski, J. Snoddy, W. K. Funkhouser, B. Koop, L. Hood and R. Crkvenjakov, Science 1993, 260, 1649–1652.CrossRefGoogle Scholar
  16. 16.
    J. B. Lamture, K. L. Beattie, B. E. Burke, M. D. Eggers, D. J. Ehrlich, R. Fowler, M. A. Hollis, B. B. Kosicki, R. K. Reich, S. R. Smith, R. S. Varma and M. E. HoGan, Nucleic Acids Res. 1994, 22, 2121–2125.CrossRefGoogle Scholar
  17. 17.
    A. D. Mirzabekov, Trends Biotechnol. 1994, 12, 27–32.CrossRefGoogle Scholar
  18. 18.
    E. M. Southern, U. Maskos and J. K. Elder, Genomics 1992, 13, 1008–1017.Google Scholar
  19. 19.
    N. E. Broude, T. Sano, C. L. Smith and C. R. Cantor, Proc. Natl. Acad. Sci. USA 1994, 91, 3072–3076.CrossRefGoogle Scholar
  20. 20.
    L. M. Davis, F. R. Fairfield, C. A. Harger, J. H. Jett, R. A. Keller, J. H. Hahn, L. A. Krakowski, B. L. Marrone, J. C. Martin, H. L. Nutter, R. L. Ratliff, E. B. Shera, D. J. Simpson and S. A. Soper, Genet. Anal. Techniq. Applicat. 1991, 8, 1–7.Google Scholar
  21. 21.
    H. G. Hansma, R. L. Sinsheimer, J. Groppe, T. C. Bruice, V. Elings, G. Gurley, M. Bezanilla, I. A. Mastrangelo, P. V. Hough and P. K. Hansma, Scanning, 1993, 15, 296–299.CrossRefGoogle Scholar
  22. 22.
    R. Feil, J. Charlton, A. P. Bird, J. Walter and W. Reik, Nucleic Acids Res. 1994, 22, 695–696.CrossRefGoogle Scholar
  23. 23.
    M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, F. Watt, G. W. Grigg, P. L. Molloy and C. L. Paul, Proc. Natl. Acad. Sci. USA 1992, 89, 1827–1831.CrossRefGoogle Scholar
  24. 24.
    M. Reeben and H. Prydz, Biotechniques 1994, 16, 416–417.Google Scholar
  25. 25.
    M. C. FitzGerald, L. Zhu and L. M. Smith, Commun. Mass Spectrom. 1993, 7, 895–897.CrossRefGoogle Scholar
  26. 26.
    D. P. Little, R. A. Chorush, J. P. Speir, M. W. Senko, N. L. Kelleher and F. W. McLafferty, J. Am. Chem. Soc. 1994, 116, 4893–4897.CrossRefGoogle Scholar
  27. 27.
    E. Nordhoff, A. R. Kirpekar, M. Karas, R. Cramer, S. Hahner, F. Hillenkamp, K. Kristiansen, P. Roespstorff and A. Lezius, Nucleic Acids Res. 1994, 22, 2460–2465.CrossRefGoogle Scholar
  28. 28.
    K. Schneider and B. T. Chait, Org. Mass Spectrom. 1993, 28, 1353–1361.CrossRefGoogle Scholar
  29. 29.
    K. J. Wu, T. A. Shaler and C. H. Becker, Anal. Chem. 1993, 66,1627–1645.Google Scholar
  30. 30.
    M. J. Doktycz, H. F. Arlinghaus, R. C. Allen and K. B. Jacobson, Electrophoresis 1992, 13, 521–528.CrossRefGoogle Scholar
  31. 31.
    K. B. Jacobson, H. F. Arlinghaus, H. W. Schmitt, R. A. Sachleben, G. M. Brown, N. Thonnard, F. V. Sloop, R. S. Foote, F. W. Larimer, R. P. Woychik, M. W. England, K. L. Burchett and D. A. Jacobson, Genomics 1991, 9, 51–59.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Charles R. Cantor
    • 1
  • Natalia Broude
    • 1
  • Takeshi Sano
    • 1
  • Marek Przetakiewicz
    • 1
  • Cassandra L. Smith
    • 1
  1. 1.Center for Advanced Biotechnology and Departments of Biomedical Engineering and PharmacologyBoston UniversityBoston

Personalised recommendations