Identifying Unexpected Protein Modifications

  • Reed J. Harris
  • Michael S. Molony
  • May Y. Kwong
  • Victor T. Ling


Mass spectrometric techniques are often employed to rapidly confirm the expected structure of a protein and to identify sites of covalent modification. Peptide digestion with LC-MS analysis is particularly useful in an analytical protein chemistry setting where protein sequences are known in advance. However, a number of unexpected and/or partial modifications may be overlooked. The identification of novel or minor types of heterogeneity often requires N-terminal sequence analysis and amino acid analysis in addition to mass spectrometric techniques. Detailed characterization of peptide maps can reveal sites of protein heterogeneity if the investigator is alert and willing to allow for novel or unexpected protein modifications. Several types of unusual protein modification, processing or substitution will be described: the replacement of methionine residues by norleucine, the hydroxylation of Lys residues of non-collagenous proteins, the processing of C-terminal Arg/Lys residues by a basic carboxypeptidase, and the identification of sites of Asn deamidation, Asp isomerization, and succinimide formation. In addition, the discovery of some novel O-linked modifications of Thr/Ser residues in EGF domains will be reviewed.


Amino Acid Analysis Tryptic Peptide Hydrophobic Interaction Chromatography Mass Spectrometric Technique Succinimide Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kisumi, M. Sigiura and I. Chibata, J. Biochem. 1976, 80, 333–339.Google Scholar
  2. 2.
    J. Trupin, H. Dickerman, M. Niremberg and H. Weissbach, Biochem. Biophys. Res. Commun. 1966, 24, 50–55.CrossRefGoogle Scholar
  3. 3.
    S. S. Kerwar and H. Weissbach, Arch. Biochem. Biophys. 1970, 141,525–532.CrossRefGoogle Scholar
  4. 4.
    H. S. Lu, L. B. Tsai, W. C. Kenney and P.-H. Lai, Biochem. Biophys. Res. Commun. 1988, 156, 807–813.CrossRefGoogle Scholar
  5. 5.
    G. Bogosian, B. N. Violand, E. J. Dorward-King, W. E. Workman, P. E. Jung and J. F. Kane, J. Biol. Chem. 1989, 264, 531–539.Google Scholar
  6. 6.
    Z. I. Randhawa, H. E. Witkowska, J. Cone, J. A. Wilkins, P. Hughes, K. Yamanishi, S. Yasuda, Y. Masui, P. Arthur, C. Kletke, F. Bitsch and C. H. L. Shackelton, Biochemistry 1994, 33, 4352–5462.CrossRefGoogle Scholar
  7. 7.
    K. I. Kivirikko, R. Myllyla and T. Pihlajaniemi, in Post-Translational Modifications of Proteins, J. J. Harding and M. J. C. Crabbe, Eds.; CRC Press: Boca Raton, 1992; pp 1–51.Google Scholar
  8. 8.
    M. S. Molony, S.-L. Wu, L. K. Keyt and R. J. Harris, in Techniques in Protein Chemistry VI, J. Crabb, Ed.; Academic Press: San Diego, 1995; in press.Google Scholar
  9. 9.
    V. L. Ling, A. W. Guzzetta, E. Canova-Davis, J. T. Stults, W. S. Hancock, T. R. Covey and B. I. Shushan, Anal. Chem.1991, 63, 2909–2915.CrossRefGoogle Scholar
  10. 10.
    R. C. Chloupek, R. J. Harris, C. K. Leonard, R. G. Keck, B. A. Keyt, M. W. Spellman, A. J. S. Jones and W. S. Hancock, J. Chromatogr. 1989, 463, 375–396.CrossRefGoogle Scholar
  11. 11.
    G. Y. Wu, B. Pereyra and S. Seifter, Biochemistry 1981, 20, 4321–4324.CrossRefGoogle Scholar
  12. 12.
    R. J. Harris, K. L. Wagner and M. W. Spellman, Eur. J. Biochem. 1990, 194, 611–620.CrossRefGoogle Scholar
  13. 13.
    R. J. Harris, J. Chromatogr. 1994, accepted.Google Scholar
  14. 14.
    M. A. Recny, H. A. Scoble and Y. Kim, J. Biol. Chem. 1987, 262, 17156–17163.Google Scholar
  15. 15.
    S. K. Chowdbury, V. Katta and B. T. Chait, Biochem. Biophys. Res. Commun. 1990, 167, 686–692.CrossRefGoogle Scholar
  16. 16.
    T. Geiger and S. Clarke, J. Biol Chem. 1987, 262, 785–794.Google Scholar
  17. 17.
    R. C. Stephenson and S. Clarke, J. Biol Chem. 1989, 264, 6164–6170.Google Scholar
  18. 18.
    A. A. Kossiakoff, Science 1988, 240, 191–194.CrossRefGoogle Scholar
  19. 19.
    R. Tyler-Cross and V. Schirch, J. Biol Chem. 1991, 266, 22549–22556.Google Scholar
  20. 20.
    C. Oliyai, J. P. Patel, L. Carr and R. T. Borchardt, J. Pharm. Res. & Technol. 1994, 48, 167–173.Google Scholar
  21. 21.
    A. DiDonato, M. A. Ciardiello, M. De Nigris, R. Piccoli, L. Mazzarella, and G. D’Alessio, J. Biol Chem. 1993, 268, 4745–4751.Google Scholar
  22. 22.
    G. T. Teshima, J. T. Stults, V. L. Ling and E. Canova-Davis, J. Biol Chem. 1991, 266, 13544–13547.Google Scholar
  23. 23.
    R. Bischoff, P. Lepage, M. Jaquinod, G. Cauet, M. Acker-Klein, D. Clesse, M. Laporte, A. Bayol, A. Van Dorsselaer and C. Roitsch, Biochemistry 1993, 32,725–734.CrossRefGoogle Scholar
  24. 24.
    P. Bornstein, and G. Balian, in Methods in Enzymology 47, C. H. W. Hirs, Ed., Academic Press: San Diego, CA, 1977; pp 132–145.Google Scholar
  25. 25.
    M. Y. Kwong and R. J. Harris, Protein Sci. 1994, 3, 147–149.CrossRefGoogle Scholar
  26. 26.
    B. N. Violand, M. R. Schüttler, E. W. Kolodziej, P. C. Toren, M. A. Cabonce, N. R. Siegel, K. L. Duffin, J. F. Zobel, C.E. Smith and J. S. Tsou, Protein Sci. 1992, 1, 1634–1641.CrossRefGoogle Scholar
  27. 27.
    Z. Shahrokh, G. Eberlein, D. Buckley, M. V. Paranandi, D. W. Aswad, P. Stratton, R. Mischak and J. J. Wang, Pharm. Res. 1994, 11, 936–944.CrossRefGoogle Scholar
  28. 28.
    E. D. Green and J. U. Baenziger, J. Biol Chem. 1988, 263, 25–35.Google Scholar
  29. 29.
    A. L. Chan, H. R. Morris, M. Panico, A. T. Etienne, M. E. Rogers, P. Gaffney, L. Creighton-Kempsford and A. Dell, Glycobiology 1991, 1, 173–185.CrossRefGoogle Scholar
  30. 30.
    S. B. Yan, Y. B. Chao and H. van Halbeek, Glycobiology 1993, 3, 597–608.CrossRefGoogle Scholar
  31. 31.
    R. J. Harris, C. K. Leonard, A. W. Guzzetta and M. W. Spellman, Biochemistry 1991, 30, 2311–2314.CrossRefGoogle Scholar
  32. 32.
    R. J. Harris, V. L. Ling and M. W. Spellman, J. Biol. Chem. 1992, 267, 5102–5107.Google Scholar
  33. 33.
    R. J. Harris, H. van Halbeek, J. Glushka, L. J. Basa, V. T. Ling, K. J. Smith and M. W. Spellman, Biochemistry 1993, 32, 6539–6547.CrossRefGoogle Scholar
  34. 34.
    R. G. Krishna, and F. Wold, in Methods in Protein Sequence Analysis, K. Imahori, and F. Sakiyama, Eds.; Plenum Press: New York, 1993; pp 167–172Google Scholar
  35. 35.
    R. J. Harris, A. A. Murnane, S. L. Utter, K. L. Wagner, E. T. Cox, G. D. Polastri, J. C. Helder and M. B. Sliwkowski, Bio/Technol. 1993, 11, 1293–1297.Google Scholar
  36. 36.
    S. Capasso, L. Mazzarilla, F. Sica, A. Zagari, and S. Salvadori, J. Chem. Soc, Chem. Commun. 1992, 12, 919–921.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Reed J. Harris
    • 1
  • Michael S. Molony
    • 1
  • May Y. Kwong
    • 1
  • Victor T. Ling
    • 1
  1. 1.Analytical Chemistry DepartmentGenentech, Inc.South San Francisco

Personalised recommendations