Effect of Perchloroethylene (PCE) on Methane and Acetate Production by a Methanogenic Consortium

  • Yared Bereded-Samuel
  • James N. Petersen
  • Rodney R. Skeen
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

The effects of perchloroethylene (PCE) concentration in the range of 0–100 mg/L on methane and acetate production by a methanol-enriched methanogenic consortia were investigated at 17°C. The results indicate that PCE is more inhibitory to methanogenesis than to acetogenesis. At concentrations as low as 10 ppm, PCE affects the methanogenic activity of the consortium, and has completely inhibited this activity at 100 ppm. Conversely, PCE does not begin to inhibit acetogenic activity until the concentration is above 10 ppm, and has not completely inhibited it even at a PCE concentration of 100 ppm.

Index Entries

Methanogenic acetogenic PCE inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bower, E. J. and McCarty, P. L. (1983) Appl. Environ. Microbial. 45, 1286–1294.Google Scholar
  2. 2.
    Fathepure, B. Z., Negu, J. P., and Boyd, S. A. (1987) Appl. Environ. Microbiol. 53, 2671–2674.Google Scholar
  3. 3.
    Fathepure, B. Z., Negu, J. P., and Boyd, S. A. (1987) FEMS Microbiol. Lett. 49, 149–156.Google Scholar
  4. 4.
    DiStefano, T. D., Gossett, J. M., and Zinder, S. H. (1991) Appl. Environ. Microbiol. 57, 2287–2292.Google Scholar
  5. 5.
    Fathepure, B. Z. and Boyd, S. A. (1988) Appl. Environ. Microbiol. 54, 2976–2980.Google Scholar
  6. 6.
    Freedman, D. L. and Gossett, J. M. (1989) Appl. Environ. Microbiol. 55, 2144–2151.Google Scholar
  7. 7.
    DeBruin, W. P., Kotterman, J. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B. (1992) Appl. Environ. Microbiol. 58, 1996–2000.Google Scholar
  8. 8.
    Vogel, T. M. and McCarty, P. L. (1985) Appl. Environ. Microbiol. 49, 1080–1083.Google Scholar
  9. 9.
    Renard, P., Bouillon, C., Naveau, H., and Nyns, E. (1993) Biotechnol. Lett. 15, 195–200.CrossRefGoogle Scholar
  10. 10.
    Blum, D. J. W. and Speece, R. E. (1991) Water Environ. Res. 63, 198.Google Scholar
  11. 11.
    Trevors, J. T. (1985) Bull. Environ. Contam. Toxicol. 34, 239–245.CrossRefGoogle Scholar
  12. 12.
    Chou, W. L., Speece, R. E., Siddiqi, R. H., and McKoen, K. (1978) Prog. Wat. Tech. 10, 545–558.Google Scholar
  13. 13.
    Skeen, R. S., Gao, J., and Hooker, B. S. (1995) Biotechnol. Bioeng. 48, 659–666.CrossRefGoogle Scholar
  14. 14.
    Wolin, E. A., Wolin, M. J., and Wolf, R. S. (1963) Appl. Environ. Microbiol. 238, 2882–2886.Google Scholar
  15. 15.
    Gossett, J. M. (1987) Environ. Sci. Technol. 21, 202–208.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yared Bereded-Samuel
    • 1
  • James N. Petersen
    • 1
  • Rodney R. Skeen
    • 2
  1. 1.Chemical Engineering DepartmentWashington State UniversityPullmanUSA
  2. 2.Paciflc Northwest LaboratoryRichlandUSA

Personalised recommendations