Effect of Temperature and Yeast Extract on Microbial Respiration of Sediments from a Shallow Coastal Subsurface and Vadose Zone

  • Kirit D. Chapatwala
  • G. R. V. Babu
  • Onguri K. Vijaya
  • E. Armstead
  • A. V. Palumbo
  • C. Zhang
  • T. J. Phelps
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

As a part of our study on microbial heterogeneity in subsurface environments, we have examined the microbial respiration of sediment samples obtained from a coastal site near Oyster, VA. The sediments at the site are unconsolidated, fine to coarse beach sand and gravel. A Columbus Instruments Micro-Oxymax Respirometer was used to measure the rate of carbon dioxide (CO2) production during the respiration of the sediment samples. The rate of respiration of the sediment samples ranged from 0.035-0.6 µL CO2/h/g of the sediment. The sediment samples showing maximum (0.6 µL CO2/h/g) and minimum (0.035 µL CO2/h/g) production of CO2were selected to study the effect of micronutrientyeast extract (0.5 and 1.0 p.g/g of the sediment) and water (0.5 and 1.0 mL) on the rate of CO2production. The rate of CO2production increased with the addition of water, but increased approx 2 orders of magnitude (from 0.26 to an average of 23.5µL CO2/h/ g) when 1.0 g/g yeast extract was added to the sediment samples. In these coastal sediments, temperature, depth, and addition of water influenced microbial activity, but the addition of 1.0.µg/g yeast extract as a micronutrient rapidly increased the rate of CO2production 2 orders of magnitude.

Index Entries

Subsurface sediments respiration carbon dioxide(CO2yeast extract micro-oxymax respirometer water production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graves, D. A., Lang, C. A. and Leavitt, M. E. (1991) Appl. Biochem. Biotechnol. 28/28, 813–826.CrossRefGoogle Scholar
  2. 2.
    Howard, P. J. A. (1972) Oikos 12, 235–240.CrossRefGoogle Scholar
  3. 3.
    Babiuk, L. A. and Paul, E. A. (1970) Can. J. Microbiol. 16, 57–62.CrossRefGoogle Scholar
  4. 4.
    Bloem, J., Ellenbroek, F. M., Bar-Gilissen, M. J. B., and Cappenberg, Th. E. (1989), Appl. Environ. Microbiol. 55, 1787–1795.Google Scholar
  5. 5.
    Balkwill, D. L. and Ghiorse, W. C. (1985) Appl. Environ. Microbiol. 50, 580–588.Google Scholar
  6. 6.
    Anderson, J. P E. and Domsch, K. H. (1985) Biol. Fertil. Soils 1, 81–89.CrossRefGoogle Scholar
  7. 7.
    Santruckova, H. and Straskraba, M. (1991) Soil Biol. Biochem. 23, 525–532.CrossRefGoogle Scholar
  8. 8.
    Mixon, R. B. (1985) US Geol. Survey Proj. Paper 1067-S-53.Google Scholar
  9. 9.
    Russell, B., Phelps, T. J.,Griffin, T., and Sargent, K. L. (1992), Water Well Journal Winter 92, 96–104.Google Scholar
  10. 10.
    Palumbo, A. V., Zhang, C., Liu, S., Scarborough, S. P., Pfiffner, S. M., and Phelps, T. J. (submitted) Appl. Biochem. Biotechnol.Google Scholar
  11. 11.
    Phelps, T. J., Pfiffner, S. M., Sargent, K. A., and White, D.C. (1994) Microbiol. Ecol. 28, 351–364.CrossRefGoogle Scholar
  12. 12.
    Palumbo, A. V., McCarthy, J. F., Parker, A., Pffiffner, S., Colwell, F. S., and Phelps, T. J. (1994) Appl. Biochem. Biotech. 45, 823–834.CrossRefGoogle Scholar
  13. 13.
    Bloem J., de Ruiter, P. C., Koopman, G. J., Lebbink G., and Brussaard, L. (1992), Soil Biol. Biochem. 7, 655–665.CrossRefGoogle Scholar
  14. 14.
    Orchard, V. A., Cook, F. J., and Corderoy, D. M. (1992) Pedobiologia 36, 21–33.Google Scholar
  15. 15.
    Beloin, R. M., Sinclair, J. L., and Ghiorse, W. C. (1988) Microbiol. Ecol. 28, 351–364.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kirit D. Chapatwala
    • 1
  • G. R. V. Babu
    • 1
  • Onguri K. Vijaya
    • 1
  • E. Armstead
    • 1
  • A. V. Palumbo
    • 2
  • C. Zhang
    • 2
  • T. J. Phelps
    • 2
  1. 1.Division of Natural ScienceSelma UniversitySelmaUSA
  2. 2.Environmental Sciences DivisionOak Ridge National LaboratoryUSA

Personalised recommendations