Advertisement

Continuous and Simultaneous Fermentation and Recovery of Lactic Acid in a Biparticle Fluidized-Bed Bioreactor

  • Eric N. Kaufman
  • Stanley P. Cooper
  • Maria N. Budner
  • Gerald R. Richardson
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

A continuous biparticle fluidized-bed reactor (BFBR) is developed for the simultaneous fermentation and recovery of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles (weak-base resin IRA-35) with sorbent capacity for the product are introduced at the top of the reactor and fall countercurrently to the biocatalyst, effecting in situ removal of the inhibitory lactic acid while also controlling reactor pH at optimal levels. One-week-long fermentation trials using immobilized Lactobacillus delbreuckii with sorbent addition demonstrated a volumetric productivity (6. 9 g/L. h) at least 16-fold higher than that of a free-cell batch fermentation with base pH control and identical biomass concentration and medium composition. Regeneration of the loaded sorbent from the BFBR has effected a 35-fold concentration of lactic acid compared with original levels in the fermentation broth (70 vs 2 g/L). Lactic acid concentrations as high as 610 g/L have been observed when the loading solution contained 50 g/L lactic acid. Rich medium formulations did not seem to increase BFBR performance. The benefits of this reactor system, as opposed to conventional batch fermentation, are discussed in terms of productivity and process economics.

Index Entries

Lactic acid fermentation resin adsorbent biparticle fluidized bed continuous 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson, B. and Mavituna, F. (1991) Biochemical Engineering and Biotechnology Handbook, 2nd ed. Stockton, New York.Google Scholar
  2. 2.
    Lipinsky, E. S. and Sinclair, R. G. (1986)Chem. Eng. Prog. 82, 26–32.Google Scholar
  3. 3.
    Chemical Marketing Reporter (1994), March 14, pp. 28–36.Google Scholar
  4. 4.
    Millis, J. (1993) Am. Chem. Soc. 38, 297–299.Google Scholar
  5. 5.
    Ohleyer, E., Blanch, H. W., and Wilke, C. R. (1985) Appl. Biochem. Biotechnol. 11, 317–331.CrossRefGoogle Scholar
  6. 6.
    Evangelista, R. L., Mangold, A. J., and Nikolov, Z. L. (1994) Appl. Biochem. Biotechnol. 45, 131–144.CrossRefGoogle Scholar
  7. 7.
    Mercier, P., Yerushalmi, L., Rouleau, D., and Dochain, D. (1992), J. Chem. Tech. Biotechnol. 55, 111–121.Google Scholar
  8. 8.
    Buchta, K. (1983), in Biotechnology: A Comprehensive Treatise Biomass, Microorganisms for Special Applications, Microbial Products I, Energy from Renwable Resources, Dellweg, H., ed., Verlag Chemie, Weinheim, Germany, 410–417.Google Scholar
  9. 9.
    Mark, H. F, Othmer, D. F., Overberger, C. G., and Seaborg, G. T., eds. (1981) Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 13, Wiley, New York.Google Scholar
  10. 10.
    King, C. J. (1992) Chem. Tech. 22, 285–291.Google Scholar
  11. 11.
    Yeh, P. L. H., Bajpai, R. K., and Iannotti, E. L. (1991) J. Fermentation Bioeng. 71, 75–77.CrossRefGoogle Scholar
  12. 12.
    Kuhn, R., Peretti, S., and Ollis, D. (1993) Appl. Biochem. Biotechnol. 39/40, 401–413.CrossRefGoogle Scholar
  13. 13.
    Kaufman, E. N., Cooper, S. P., Clement, S. L., and Little, M. H. (1995) Appl. Biochem. Biotechnol. 51, 605–620.CrossRefGoogle Scholar
  14. 14.
    Melzoch, K. and Konopaskova, L. (1993) Biotechnol. Lett. 15, 517–520.CrossRefGoogle Scholar
  15. 15.
    Andrews, G. F. and Fonta, J. P. (1989) Appl. Biochem. Biotechnol. 20, 375–390.CrossRefGoogle Scholar
  16. 16.
    Stenroos, S. L., Linko, Y. Y., and Linko, P. (1982) Biotechnol. Lett. 4, 159–164.CrossRefGoogle Scholar
  17. 17.
    Guoqiang, D., Kaul, R., and Mattiasson, B. (1991) Appl. Microbiol. Biotechnol. 36, 309–314.CrossRefGoogle Scholar
  18. 18.
    Hang, Y. D., Hamamci, H., and Woodams, E. E. (1989) Biotechnol. Lett. 11, 119–120.Google Scholar
  19. 19.
    Yabannavar, V. M. and Wang, D. I. C. (1991) Biotechnol. Bioeng. 37, 1095–1100.CrossRefGoogle Scholar
  20. 20.
    Vick Roy, T. B., Blanch, H. W., and Wilke, C. R. (1982) Biotechnol. Lett. 4, 483–488.CrossRefGoogle Scholar
  21. 21.
    Shi, Z., Shimizu, K., Iijima, S., Morisue, T., and Kobayashi, T. (1990), J. Fermentation Bioeng. 70, 415–419.CrossRefGoogle Scholar
  22. 22.
    Xavier, A. M. R. B., Goncalves, L. M. D., Moreira, J. L., and Carrondo, M. J. T. (1995) Biotechnol. Bioeng. 45, 320–327.CrossRefGoogle Scholar
  23. 23.
    Kulozik, U., Hammelehle, B., Pfeifer, J., and Kessler, H. G. (1992) J. Biotechnol. 22,107–116.CrossRefGoogle Scholar
  24. 24.
    Venkatesh, K. V., Okos, M. R., and Wankat, P. C. (1993) Process Biochem. 28, 231–241.CrossRefGoogle Scholar
  25. 25.
    Seevaratnam, S., Holst, J. O., Hjorleifsdottir, S., and Mattiasson, B. (1991) Bioprocess Eng. 6, 35–41.CrossRefGoogle Scholar
  26. 26.
    Martin, M. S., Pazos, C., and Coca, J. (1992) J. Chem. Tech. Biotechnol. 54, 1–6.Google Scholar
  27. 27.
    Siebold, M., Frieling, P. V., Joppien, R., Rindfleisch, D., Schugerl, K., and Roper, H. (1995) Process Biochem. 30, 81–95.Google Scholar
  28. 28.
    Garcia, A. A. (1991) Biotechnol. Prog. 7, 33–42.CrossRefGoogle Scholar
  29. 29.
    Galliot, F. P., Gleason, C., Wilson, J. J., and Zwarick, J. (1990) Biotechnol. Prog. 6, 370–375.CrossRefGoogle Scholar
  30. 30.
    Srivastava, A., Roychoudhury, P. K., and Sahai, V. (1992) Biotechnol. Bioeng. 39, 607–613.CrossRefGoogle Scholar
  31. 31.
    Davison, B. H. and Scott, C. D. (1992) Biotechnol. Bioeng. 39, 365–368.CrossRefGoogle Scholar
  32. 32.
    Davison, B. H. and Thompson, J. E. (1992) Appl. Biochem. Biotechnol. 34, 431–439.CrossRefGoogle Scholar
  33. 33.
    Godia, F., Casas, C., and Sola, C. (1987) Process Biochem. 22, 43–48.Google Scholar
  34. 34.
    Davison, B. H. and Scott, C. D. (1988) Appl. Biochem. Biotechnol. 18, 19–34.CrossRefGoogle Scholar
  35. 35.
    Kaufman, E. N., Cooper, S. P., and Davison, B. H. (1994) Appl. Biochem. Biotechnol. 45, 545–554.CrossRefGoogle Scholar
  36. 36.
    Scott, C. D. (1987) Ann. NY Acad. Sci. 501, 487–493.CrossRefGoogle Scholar
  37. 37.
    Major, N. C. and Bull, A. T. (1989) Biotechnol. Bioeng. 34, 592–599.CrossRefGoogle Scholar
  38. 38.
    Ernst, E. E. and McQuigg, D. W. (1992) in AICHE 1992 National Meeting, Miami Beach, FL.Google Scholar
  39. 39.
    Nakagawa, M., Nakamura, I., and Kobayashi, T. (1975) J. Fermentation Technol. 53, 127–134.Google Scholar
  40. 40.
    Yang, C. W., Lu, Z., and Tsao, G. T. (1995) Appl. Biochem. Biotechnol. 51, 57–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Eric N. Kaufman
    • 1
  • Stanley P. Cooper
    • 1
  • Maria N. Budner
    • 1
  • Gerald R. Richardson
    • 1
  1. 1.Bioprocessing Research and Development Center, Chemical Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations