Ethanol Production from Cellulose by Two Lignocellulolytic Soil Fungi

  • Lucia R. Durrant
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

The present work examines the production of ethanol via direct fermentation of pure celluloses and lignocellulosic wastes by two soil fungi isolated under anaerobic conditions. The strains were cultured on a defined medium containing filter paper slurry as the carbon source under anaerobic, microaerophilic, and aerobic conditions. After complete degradation of the cellulose, lignocellulases and fermentation products were determined. Highest activities for Trichocladium canadense (strain Q10) and the basidiomycete strain (strain H2), were obtained when cultures were incubated under microaerophilic conditions and air, respectively. Laccase activity was present in the culture supernatants of both strains, but peroxidase was only produced by strain H2. Ethanol was the major nongaseous fermentation product. Highest conversion of available cellulose to ethanol was obtained with strain Q10 (90-96%), under microaerophilic conditions. Ethanol production decreased when microcrystalline cellulose and lignocellulosic substrates were used.

Index Entries

Cellulolytic fungi lignocellulose degradation microaerophilic fungi fermenting fungi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orpin, C. G. (1975) J. Gen. Microbiol. 91, 249–262.Google Scholar
  2. 2.
    Orpin, C. G. (1977) J. Gen. Microbiol. 99, 107–117.Google Scholar
  3. 3.
    Bauchop, T. (1989) Biosystems 23, 53–64.CrossRefGoogle Scholar
  4. 4.
    Kostiukovskii, V. A., Okunev, O. N., and Tarakanov, B. V. (1990) Mikrobiologiia 59, 1067–1074.Google Scholar
  5. 5.
    Phillips, M. W. and Gordon, G. L. (1988) Biosystems 21, 377.CrossRefGoogle Scholar
  6. 6.
    Teunissen, M.J., Op den Camp, H. J., Orpin, C. G., Huis in’t Veld, J. H., and Vogels, G. D. (1991) J. Gen. Microbiol. 137, 1401.Google Scholar
  7. 7.
    Teunissen, M. J., Smith, A. A. M., Op den Camp, H. J., Orpin, C. G., Huis in’t Veld, J. H., and Vogels, G. D. (1991) Arch. Microbiol. 156, 290–296.CrossRefGoogle Scholar
  8. 8.
    Barichievich, E. M. and Calza, R. E. (1990) Appl. Environ. Microbiol. 56, 43–48.Google Scholar
  9. 9.
    Lowe, S. E., Theodorou, M. K. and Trincy, A. P. (1987) Appl. Environ. Microbiol. 53, 1216–1223.Google Scholar
  10. 10.
    Orpin, C. G. (1988) Biosystems 21, 365–370.CrossRefGoogle Scholar
  11. 11.
    Teunissen, M. J. and Op den Camp, H. J. (1993) Antonie Van Leeuwenhoek 63, 63–76.CrossRefGoogle Scholar
  12. 12.
    Wilson, C. A. and Wood, T. M. (1992) Enzyme Microb. Technol. 14, 258–264.CrossRefGoogle Scholar
  13. 13.
    Akin, D. E. (1987) Anim. Feed Sci. Technol. 16, 273–285.CrossRefGoogle Scholar
  14. 14.
    Akin, D. E. and Borneman, W. S. (1990) J. Dairy Sci. 73, 3023–3032.CrossRefGoogle Scholar
  15. 15.
    Akin, D. E., Borneman, W. S., and Windham, W. R. (1988) Biosystems 21, 385–391.CrossRefGoogle Scholar
  16. 16.
    Akin, D. E. and Rigsby, L. L. (1987) Appl. Environ. Microbiol. 53, 1987–1995.Google Scholar
  17. 17.
    Wubah, D. A., Akin, D. E., and Borneman, W. S. (1993), Critical Rev. Microbiol. 1999–115.CrossRefGoogle Scholar
  18. 18.
    Durrant, L. R., Canale-Parola, E., and Leschine, S. B. (1995), in The Significance and Regulation of Soil Biodiversity, Collins, H. P., Robertson, G. P., and Klug, M. J., eds., Kluwe Academic, The Netherlands.Google Scholar
  19. 19.
    Leschine, S. B. and Canale-Parola, E. (1983) Appl. Environ. Microbiol. 46, 728–737.Google Scholar
  20. 20.
    Hungate, R. E. (1969)Methods in Microbiologyvol. 3B, Norris, J. R. and Ribbons, D. W., eds., Academic, New York.Google Scholar
  21. 21.
    Miller, G. L. R., Blum, R., Glennon, W. E., and Burton, A. L. (1960) Anal. Biochem. 2, 127–132.CrossRefGoogle Scholar
  22. 22.
    Bradford, M. M. (1976) Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  23. 23.
    Kawai, S., Umezawa, T., and Higushi, T. (1988) Arch. Biochem. Biophys. 262(1), 99–110.CrossRefGoogle Scholar
  24. 24.
    Harkin, J. M. and Obst, Jr. (1973) Experimentia 29, 381–508.CrossRefGoogle Scholar
  25. 25.
    Christakopoulos, P., Macris, B., and Kekos, D. (1989) Enzyme Microb. Technol. 11, 236–239.CrossRefGoogle Scholar
  26. 26.
    Christakopoulos, P., Koullas, D. P., Kekos, D., Koukios, E.G., and Macris, B. (1991) Enzyme Microb. Technol. 13, 272–274.CrossRefGoogle Scholar
  27. 27.
    Morohoshi, N. (1991) Enzymes in Biomass Conversion, Leatham, G. F. and Himmel, M. E., eds., ACS Symposium Series 460. ACS, Washington, DC.Google Scholar
  28. 28.
    Singh, A., Kumar, P. K., and Schuger, K. (1992) Biochem. Int. 27, 831–839.Google Scholar
  29. 29.
    Singh, A., Kumar, P. K. and Schuger, K. (1992) Biotechnol. Appl. Biochem. 16, 296–302.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Lucia R. Durrant
    • 1
  1. 1.Faculdade de Engenharia de AlimentosUniversidade Estadual de Campinas (UNICAMP)Brazil

Personalised recommendations