Advertisement

Coal-Induced Enhancement of Ethanol and Biomass Production

  • J. Kevin Polman
  • Catherine Rae
  • Karen M. Delezene-Briggs
Part of the ABAB Symposium book series (ABAB, volume 57/58)

Abstract

Inclusion of coal in Saccharomyces cerevisiae cultures enhanced ethanol and biomass production (from dextrose) similarly to yeast extract. Coal-induced enhancement was slower in comparison to yeast extract. Ethanol/biomass ratios were twice as high for coal-induced enhancement. Humic acid also enhanced ethanol and biomass production. Coal supplied nitrogen, phosphorus, magnesium, and zinc to cells. Coal facilitated the utilization of cobalt, and reduced the toxicity of aluminum and manganese. Coal-induced enhancement may be a chelation effect; ethylenediaminetetraacetic acid mimicked coal enhancement. Coal also enhanced ethanol and biomass production by Zygosaccharomyces rouxii.

Index Entries

Ethanol coal chelator Saccharomyces Zygosaccharomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chemical Marketing Reporter (1994), Dec. 27 issue, p. 7.Google Scholar
  2. 2.
    The Oil Daily (1993), Nov. 1 issue, p. 4.Google Scholar
  3. 3.
    Eco-Log Week (1993), April 30 issue.Google Scholar
  4. 4.
    Oil Gas J. (1993), Oct. 18 issue, p. 19.Google Scholar
  5. 5.
    Maiorella, B. L. (1985), in Comprehensive Biotechnology, vol. 3., Moo-Young, M., ed., Pergamon, New York, pp. 861–914.Google Scholar
  6. 6.
    Hodgson, J. (1994) Bio/technology 12, 983–987.CrossRefGoogle Scholar
  7. 7.
    von Sivers, M., Zacchi, G., Olsson, L., and Hahn-Hägerdal, B.(1994), Biotechnol. Prog. 10, 555–560.CrossRefGoogle Scholar
  8. 8.
    Polman, J. K., Breckenridge, C. R., Dugan, P. R., and Quigley, D. R. (1990), in Proceedings: First International Symposium on the Biological Processing of Coal, EPRI, Palo Alto, CA, pp. 462–472.Google Scholar
  9. 9.
    Polman, J. K., Breckenridge, C. R., Dugan, P. R., and Quigley, D. R. (1991) Appl. Biochem. Biotechnol. 28/29, 487–494.CrossRefGoogle Scholar
  10. 10.
    Polman, J. K., Breckenridge, C. R., and Quigley, D. R. (1991), in Proceedings: Second International Symposium on the Biological Processing of Coal, EPRI, Palo Alto, CA, pp. P63–P77.Google Scholar
  11. 11.
    Olsson, G., Larsson, L., Holst, O., and Karlsson, H. T. (1989) Fuel 68, 1270–1274.CrossRefGoogle Scholar
  12. 12.
    Derbyshire, F., Marzec, A., Schulten, H.-R., Wilson, M. A., Davis, A., Tekely, P., et al. (1989) Fuel 68, 1091–1106.CrossRefGoogle Scholar
  13. 13.
    Huttinger, K. J. and Michenfelder, A. W. (1987) Fuel 66, 1164–1165.CrossRefGoogle Scholar
  14. 14.
    Vorres, K. S. (1990) Fuel 4, 420–426.Google Scholar
  15. 15.
    Daniels, L., Hanson, R. S., and Phillips, J. A. (1994), in Methods for General and Molecular Bacteriology, Gerhardt, P., ed., ASM, Washington, DC, pp. 518–519.Google Scholar
  16. 16.
    Polman, J. K. and Quigley, D. R. (1991) Energy Fuel 5, 352–353.CrossRefGoogle Scholar
  17. 17.
    Chem. Eng.(1962), vol. 69, pp. 68–70.Google Scholar
  18. 18.
    Polman, J. K. (1993), in Bioprocessing of Fossil Fuels Program: Quarterly Report, Dugan, P. R., ed., EG&G Idaho, Idaho Falls, ID, pp. 11–20.Google Scholar
  19. 19.
    Quigley, D. R., Breckenridge, C. R., and Dugan, P. R. (1989) Energy Fuel 3, 571–574.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. Kevin Polman
    • 1
  • Catherine Rae
    • 1
  • Karen M. Delezene-Briggs
    • 1
  1. 1.Idaho National Engineering LaboratoryLockheed Idaho Technologies CompanyIdaho FallsUSA

Personalised recommendations