Peculiarities of the Regulation of Fermentation and Respiration in the Crabtree-Negative, Xylose-Fermenting Yeast Pichia stipitis

  • Volkmar Passoth
  • Martin Zimmermann
  • Ulrich Klinner
Part of the ABAB Symposium book series (ABAB, volume 57/58)


The respiration of Pichia stipitis was not repressed by either high concentrations of fermentable sugars or oxygen limitation. Fermentation was not induced by high sugar concentrations, but was inactivated by aerobic conditions. The activity of pyruvate dehydrogenase was constitutive. In contrast, pyruvate decarboxylase, alcohol dehydrogenase, and aldehyde dehydrogenase were induced by a reduction in the oxygen tension. It was demonstrated that in P. stipitis, the pyruvate decarboxylase is not induced by a signal from glycolysis. Contrary to Saccharomyces cerevisiae, the pyruvate decarboxylase was not inhibited by phosphate.

Index Entries

Pichia stipiti PDC PDH ADH aldehyde dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    du Preez, J. C. (1994) Enzyme Microb. Technol. 16, 944–956.CrossRefGoogle Scholar
  2. 2.
    Hahn-Hägerdal, B., Jeppsson, H., Skoog, K., and Prior, B. A. (1994) Enzyme Microb. Technol. 16, 933–943.CrossRefGoogle Scholar
  3. 3.
    Rizzi, M., Klein, C., Schulze, C., Bui-Thanh, N.-A., and Dellweg, H. (1989) Biotechnol. Bioeng. 34, 509–514.CrossRefGoogle Scholar
  4. 4.
    Lighthelm, M. E., Prior, B. A., and du Preez, J. C. (1988) Appl. Microbiol.Biotechnol. 28, 63–68.Google Scholar
  5. 5.
    Skoog, K., Jeppson, H., and Hahn-Hägerdal, B. (1992) Appl. Biochem. Biotechnol. 34/35, 369–375.CrossRefGoogle Scholar
  6. 6.
    Bruinenberg, P. M., de Bot, P. H. M., van Dijken, J. P., and Scheffers, W. A. (1984) Appl. Microbiol. Biotechnol. 19, 256–260.CrossRefGoogle Scholar
  7. 7.
    Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989) Process Biochem. 24, 21–31.Google Scholar
  8. 8.
    Kurtzman, C. P. (1990) Antonie van Leeuwenhoek 57, 215–222.CrossRefGoogle Scholar
  9. 9.
    Alexander, M. A., Yang, V. W., and Jeffries, T. W. (1988) Appl. Microbiol. Biotechnol. 29, 282–288.Google Scholar
  10. 10.
    Skoog, K. and Hahn-Hägerdal, B. (1990) Appl. Environ. Microbiol. 56, 3389–3394.Google Scholar
  11. 11.
    Boles, E., Heinisch, J., and Zimmermann, F. K. (1993) Yeast 9, 761–770.CrossRefGoogle Scholar
  12. 12.
    Dellweg, H., Rizzi, M., Methner, H., and Debus, D. (1984) Biotechnol. Lett. 6, 395–400.CrossRefGoogle Scholar
  13. 13.
    Girio, F. M., Peito, M. A., and Amaral-Collaco, M. T. (1989) Appl. Microbiol.Biotechnol. 32, 199–204.CrossRefGoogle Scholar
  14. 14.
    Ciriacy, M. and Breitenbach, I. (1979) J. Bacterial. 139, 152–160.Google Scholar
  15. 15.
    Kresze, G.-B. and Ronft, H. (1981) Eur. J. Biochem. 119, 573–579.CrossRefGoogle Scholar
  16. 16.
    Ullrich, J. (1970) Methods Enzymol. 18, 109–115.CrossRefGoogle Scholar
  17. 17.
    Bradbury, S. L., Clark, J. F., Steinman, C. R., and Jakoby, C. R. (1975) Methods Enzymol. 41, 354–360.CrossRefGoogle Scholar
  18. 18.
    Bergmeyer, H. U. (1977), Verlag Chemie. Weinheim.Google Scholar
  19. 19.
    Wieker, H. -J., Johannes, K.-J., and Hess, B. (1970) FEBS Lett. 8, 178–185.CrossRefGoogle Scholar
  20. 20.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1988) Appl. Microbiol. Biotechnol. 29, 155–161.Google Scholar
  21. 21.
    Grootjen, D. R. J., van der Lans, R. G. J. M., and Luyben, K. C. A. M. (1991) Enzyme Microb. Technol. 13, 648–654.CrossRefGoogle Scholar
  22. 22.
    Keha, E. E., Ronft, H., and Kresze, G.-B. (1982) FEBS Lett. 145, 289–292.CrossRefGoogle Scholar
  23. 23.
    Polakis, E. S. and Bartley, W. (1965) Biochem. J. 97, 284–297.Google Scholar
  24. 24.
    Schmitt, H. D. and Zimmermann, F. K. (1982) J. Bacteriol. 151, 1146–1152.Google Scholar
  25. 25.
    Sierkstra, L. N., Nouwen, N. P., Verbakel, J. M. A., and Verrips, C. T. (1993) Yeast 9, 787–795.CrossRefGoogle Scholar
  26. 26.
    Boiteux, A. and Hess, B. (1970) FEBS Lett. 9, 293–296.CrossRefGoogle Scholar
  27. 27.
    Ullrich, J. and Donner, I. (1970) Hoppe-Seyler’s Z. Physiol. Chem. 351, 1026–1029.CrossRefGoogle Scholar
  28. 28.
    Polakis, E. S., Bartley, W., and Meek, G. A. (1964) Biochem. J. 90, 369–374.Google Scholar
  29. 29.
    Tustanoff, E. R. and Bartley, W. (1962), Biochem. J. 84, 40–41.Google Scholar
  30. 30.
    Maitra, P. K. and Lobo, P. K. (1971) J. Biol. Chem. 246, 475–488.Google Scholar
  31. 31.
    Pateman, J. A., Doy, C. H., Olson, J. E., Norris, U., Creaser, E. H., and Hynes, M. (1983), Proc. Roy. Soc. Lond. B217, 243–264.CrossRefGoogle Scholar
  32. 32.
    Jones, R. P. (1989) Enzyme Microb. Technol. 11, 130–153.CrossRefGoogle Scholar
  33. 33.
    Steinman, C. R. and Jakoby, W. B. (1968) J. Biol. Chem. 243, 730–734.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Volkmar Passoth
    • 1
  • Martin Zimmermann
    • 1
  • Ulrich Klinner
    • 1
  1. 1.Institut für Biologie IV (Mikrobiologie)RWTH AachenAachenGermany

Personalised recommendations