Xylanase Production by Aspergillus awamori in Solid-State Fermentation and Influence of Different Nitrogen Sources

  • Judith L. S. Lemos
  • Maria C. de A. Fontes
  • Nei PereiraJr.
Part of the ABAB Symposium book series (ABAB)


The use of purified xylan as a substrate for bioconversion into xyianases increases the cost of enzyme production. Consequently, there have been attempts to develop a bioprocess to produce such enzymes using different lignocellulosic residues. Filamentous fungi have been widely used to produce hydrolytic enzymes for industrial applications, including xyianases, whose levels in fungi are generally much higher than those in yeast and bacteria. Considering the industrial importance of xyianases, the present study evaluated the use of milled sugarcane bagasse, without any pretreat-ment, as a carbon source. Also, the effect of different nitrogen sources and the C:N ratio on xylanase production by Aspergillus awamori were investigated, in experiments carried out in solid-state fermentation. High extracellular xylanolytic activity was observed on cultivation of A. awamori on milled sugarcane bagasse and organic nitrogen sources (45 IU/mL for endoxylanase and 3.5 IU/mL for β-xylosidase). Endoxylanase and β-xylosidase activities were higher when sodium nitrate was used as the nitrogen source, when compared with peptone, urea, and ammonium sulfate at the optimized C:N ratio of 10:1. The use of yeast extract as a supplement to the these nitrogen sources resulted in considerable improvement in the production of xyianases, showing the importance of this organic nitrogen source on A. awamori metabolism.

Index Entries

Aspergillus awamori xyianases nitrogen nutrition solid-state fermentation sugarcane bagasse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haltrich, D., Nidetzky, B., Kulbe, K. D., Steiner, W., and Zupancic, S. (1996), Bioresour. Technol. 58, 137–161.CrossRefGoogle Scholar
  2. 2.
    Cui, Y. Q., van der Lans, R. G. J. M., Giuseppin, M. L. F., and Luyben, K. C. A. M. (1998), Enzyme Microb. Technol. 23, 157–167.CrossRefGoogle Scholar
  3. 3.
    Carmona, E. C., Pizzirani-Kleiner, A. A., Monteiro, R. T. R., and Jorge, J. A. (1997), J. Basic Microbiol. 37, 387–393.CrossRefGoogle Scholar
  4. 4.
    Peterson, G. L. (1979), Anal. Biochem. 100, 201–220.CrossRefGoogle Scholar
  5. 5.
    Wiame, M. A. J., Grenson, M., and Arst, H. N. (1985), in Advances in Microbial Physiology, vol. 26, Rose, A. H. and Tempest, D. W., eds., Academic Press, London, pp. 1–87.Google Scholar
  6. 6.
    Griffin, D. H. (1994), Fungal Physiology, 2nd ed., J. Wiley and Sons, New York.Google Scholar
  7. 7.
    Marzluf, G. A. (1981), Microbiol. Rev. 45, 437–461.Google Scholar
  8. 8.
    Fernández-Espinar, M. T., Peña, J. L., Piñaga, F., and Vallés, S. (1994),FEMS Microbiol. Lett. 115, 107–112.CrossRefGoogle Scholar
  9. 9.
    Slaughter, J. C. (1988), in Physiology of Industrial Fungi, Berry, D. R., ed., Blackwell Scientific Publications, Oxford, pp. 58–96.Google Scholar
  10. 10.
    Bon, E. P. S. and Webb, C. (1993), Appl. Biochem. Biotechnol 39/40, 349–369.CrossRefGoogle Scholar
  11. 11.
    Schlegel, H. G. (1989), in Basic Biotechnology—A Student’s Guide, Präve, P., Faust, U., Sittig, W., and Sukatsch, D. A., eds., VHC Publishers, pp. 67–101.Google Scholar
  12. 12.
    Smith, D. C. and Wood, T. M. (1991), Biotechnol. Bioeng. 38, 883–890.CrossRefGoogle Scholar
  13. 13.
    Haltrich, D., Laussamayer, B., and Steiner, W. (1994), Appl. Microbiol. Biotechnol. 42, 522–530.CrossRefGoogle Scholar
  14. 14.
    Gutierrez-Correa, M. and Tengerdy, R. P. (1998), Biotechnol. Lett. 20, 45–47.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Judith L. S. Lemos
    • 1
  • Maria C. de A. Fontes
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Departamento de Engenharia Bioquímica, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de Janeiro, RJBrazil

Personalised recommendations