Advertisement

Nitrification and Denitrification Processes for Biologic Treatment of Industrial Effluents

  • Célia Regina Granhen Tavares
  • Renata Ribeiro De Araújo Rocha
  • Terezinha Aparecida Guedes
Chapter
Part of the ABAB Symposium book series (ABAB)

Abstract

Nitrification process performance was evaluated using a three-phase fluidized-bed bioreactor. A synthetic effluent was used for this experiment containing 180–230 mg/L of chemical oxygen demand (COD), 25–30 mg/L of N-NH4 +, 12 to 13 mg/L of total phosphorous, and micronutrients. The bioreactor used for denitrification behaved as completely mixed. The results indicate that the nitrification process was efficient, reaching efficiencies of about 98%. The best results related to the efficiency of the denitrification process were obtained when the processes were supplemented with the carbon source. The results indicated an efficiency of 86–98% COD removal.

Index Entries

Nitrification denitrification three-phase fluidized-bed bioreactor Nitrobacter Nitrosomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cooper, P. F. and Williams, S. C. (1990), Water Sci. Technol. 22, 431–442.Google Scholar
  2. 2.
    Boongorsrang, A., Kenichi, S., and Yoshimichi, M. (1982), J. Ferment. Technol. 60, 357–362.Google Scholar
  3. 3.
    Fang, H., Chou, M., and Huang, C. (1993), Water Res. 27, 1761–1765.CrossRefGoogle Scholar
  4. 4.
    Prosser, J. I. (1989), Adv. Microb. Physiol. 30, 125–182.CrossRefGoogle Scholar
  5. 5.
    Rosa, M. F. (1997), PhD thesis, DEQ/DEB-EQ, UFRJ, Rio de Janeiro-RJ, Brazil.Google Scholar
  6. 6.
    Yatong, X. (1995), Water Treat. 10, 81–88.Google Scholar
  7. 7.
    Narjari, N. K., Khilar, K. C., and Mahajan, S. P. (1984), Biotechnol. Bioeng. 26, 1445–1448.CrossRefGoogle Scholar
  8. 8.
    Mazierski, J. (1994), Water Res. 28, 1981–1985.CrossRefGoogle Scholar
  9. 9.
    Cheng, S. and Chen, W. (1994), Water Sci. Technol. 30, 131–142.Google Scholar
  10. 10.
    Siegrist, H. and Gujer, W. (1987), Water Res. 21, 1481–1487.CrossRefGoogle Scholar
  11. 11.
    Szwerinski, H., Arvin, E., and Harremoes, P. (1986), Water Res. 20, 971–976.CrossRefGoogle Scholar
  12. 12.
    Tavares, C. R. G. (1992). PhD thesis, COPPE/UFRJ, Rio de Janeiro-RJ, Brazil.Google Scholar
  13. 13.
    Koroleff, K. (1983), in Methods of Seawater Analysis, Grasshoff, E. and Kremling, S., eds., Verlag Chemie, Weinhein, Germany, pp. 126–127.Google Scholar
  14. 14.
    Abeling, U. and Seyfried, C. F. (1992), Water Sci. Technol. 26, 1007–1015.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Célia Regina Granhen Tavares
    • 1
  • Renata Ribeiro De Araújo Rocha
    • 1
  • Terezinha Aparecida Guedes
    • 1
  1. 1.State University of MaringáParaná, BrazilMaringá, PRBrazil

Personalised recommendations