Growth Factors During Ovarian Angiogenesis

  • Anna T. Grazul-Bilska
  • Dale A. Redmer
  • Lawrence P. Reynolds
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


As recognized by Hudlická, capillary growth in normal adult tissues is indeed a rare event, and the endothelium represents an extremely stable population of cells with a low mitotic activity (Denekamp, 1984; Hudlická, 1984). This observation is not surprising, because physiologic angiogenesis is usually associated with tissue growth or repair, and most normal adult tissues are relatively stable (Hudlická, 1984; Klagsbrun and D’Amore, 1991).


Vascular Endothelial Growth Factor Luteinizing Hormone Granulosa Cell Corpus Luteum Estrous Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, T. H., Gay, W. J., and Montani, J.-P. 1990. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am. J. Physiol. 259:R393–R404.PubMedGoogle Scholar
  2. Aiello, L. P., Northrup, J. M., Keyt, B. A., Takagi, H., and Iwamoto, M. A. 1995. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch. Ophthalmol. 113:1538–1534.Google Scholar
  3. Andrews, W. C. 1979. Luteal phase defects. Fertil. Steril. 32:501–509.Google Scholar
  4. Antonelli-Orlidge, A., Smith, S. R., and D’Amore, P. A. 1989. Influence of pericytes on capillary endothelial cell growth. Am. Rev. Respir. Dis. 140:1129–1131.PubMedGoogle Scholar
  5. Barinaga, M. 1997. Cancer research: designing therapies that target tumor blood vessels. Science 275:482–484.PubMedCrossRefGoogle Scholar
  6. Baserga, R. 1985. The Biology of Cell Reproduction. Cambridge, MA: Harvard University Press.Google Scholar
  7. Christenson, L. K., and Stouffer, R. L. 1996. Proliferation of microvascular endothelial cells in the primate corpus luteum during the menstrual cycle and simulated early pregnancy. Endocrinology 137:367–374.PubMedCrossRefGoogle Scholar
  8. Clark, J. G. 1900. The origin, development and degeneration of the blood-vessels of the human ovary. Johns Hopkins Hosp. Rep. 9:593–676.Google Scholar
  9. Darland, N. W. 1985. Infertility associated with luteal phase defect. J. Obstet. Gynecol. Neonatal Nurs. 14:212–217.PubMedCrossRefGoogle Scholar
  10. Davis, S., and Yancopoulos, G. D. 1999. The angiopoietins: Yin and Yang in angiogenesis. Curr. Topics Microbiol. Immunol. 237:173–185.CrossRefGoogle Scholar
  11. Denekamp, J. 1984. Vasculature as a target for tumour therapy. In: Hammersen, F., and Hudlicka, O., eds. Progress in Applied Microcirculation, vol. 4. Karger, Basel, pp. 2838.Google Scholar
  12. Dharmarajan, A. M., Bruce, N. W., and Meyer, G. T. 1985. Quantitative ultrastructural characteristics relating to transport between luteal cell cytoplasm and blood in the corpus luteum of the pregnant rat. Am. J. Anat. 172:87–99.PubMedCrossRefGoogle Scholar
  13. diZerega, G. S., and Hodgen, G. D. 1980. Fluorescence localization of luteinizing hormone/human chorionic gonadotropin uptake in the primate ovary. II. Changing distribution during selection of the dominant follicle. J. Clin. Endocrinol. Metab. 51:903–907.PubMedCrossRefGoogle Scholar
  14. Doraiswamy, V. D. 1998. Angiogenesis in the ovine ovary: expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). Dissertation. North Dakota State University, Fargo.Google Scholar
  15. Doraiswamy, V., Grazul-Bilska, A. T., Ricke, W. A., Redmer, D. A., and Reynolds, L. P. 1995. Immunoneutralization of angiogenic activity from ovine corpora lutea (CL) with antibodies against fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF). Biol. Reprod. 52(suppl 1):112.Google Scholar
  16. Doraiswamy, V., Knutson, D. L., Grazul-Bilska, A. T., Redmer, D. A., and Reynolds, L. P. 1998. Fibroblast growth factor receptor (FGFR)-1 and -2 in the ovine corpus luteum throughout the estrous cycle. Growth Factors 16:125–135.PubMedCrossRefGoogle Scholar
  17. Farin, C. E., Moeller, C. L., Sawyer, H. R., Gamboni, F., and Niswender, G. D. 1986. Morphometric analysis of cell types in the ovine corpus luteum throughout the estrous cycle. Biol. Reprod. 35:1299–1308.CrossRefGoogle Scholar
  18. Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., Chisolm, V., Hillan, K. J., and Schwall, R. H. 1998. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4:336–340.Google Scholar
  19. Ferrara, N., and Davis-Smyth, T. 1997. The biology of vascular endothelial growth factor. Endoc. Rev. 18:4–25.Google Scholar
  20. Foley, G. L. 1996. Pathology of the corpus luteum of cows. Theriogenology 45:14131428.Google Scholar
  21. Fraser, H. M., Dickson, S. E., Lunn, S. F., Wulff, C., Morris, K. D., Carroll, V. A., and Bicknell, R. 2000. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141:995–1000.PubMedCrossRefGoogle Scholar
  22. Garrido, C., Saule, S., and Gospodarowicz, D. 1993. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Factors 8:109–117.PubMedCrossRefGoogle Scholar
  23. Garverick, H. A., and Smith, M. F. 1986. Mechanisms associated with subnormal luteal function. J. Anim. Sci. 62(suppl 2):92–105.PubMedGoogle Scholar
  24. Garverick, H. A., Zollers, W. G., Jr., and Smith, M. F. 1992. Mechanisms associated with corpus luteum lifespan in animals having normal or subnormal luteal function. Anim. Reprod. Sci. 28:111–124.Google Scholar
  25. Goede, V., Schmidt, T., Kimmina, S., Kozian, D., and Augustin, H. G. 1998. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78:1385–1394.Google Scholar
  26. Grazul-Bilska, A. T., Redmer, D. A., Jablonka-Shariff, A., Biondini, M. E., and Reynolds, L. P. 1995a. Proliferation and progesterone production of ovine luteal cells from several stages of the estrous cycle: effects of fibroblast growth factors (FGF) and luteinizing hormone (LH). Can. J. Physiol. Pharmacol. 73:491–500.CrossRefGoogle Scholar
  27. Grazul-Bilska, A. T., Redmer, D. A., Killilea, S. D., Kraft, K. C., and Reynolds, L. P. 1992b. Production of mitogenic factor(s) by ovine corpora lutea throughout the estrous cycle. Endocrinology 130:3625–3632.CrossRefGoogle Scholar
  28. Grazul-Bilska, A. T., Redmer, D. A., Killilea, S. D., Zheng, J., and Reynolds, L. P. 1993. Initial characterization of endothelial mitogens produced by bovine corpora lutea from the estrous cycle. Biochem. Cell Biol. 71:270–277.Google Scholar
  29. Grazul-Bilska, A. T., Redmer, D. A., Zheng, J., Killilea, S. D., and Reynolds, L. P. 1995b. Initial characterization of mitogenic activity of ovine corpora lutea from early pregnancy. Growth Factors 12:131–144.CrossRefGoogle Scholar
  30. Grazul-Bilska, A. T., Reynolds, L. P., Slanger, W. D., and Redmer, D. A. 1992a. Production of heparin-binding angiogenic factor(s) by bovine corpora lutea during pregnancy. J. Anim. Sci. 70:254–262.Google Scholar
  31. Greenwald, G. S. 1989. Temporal and topographic changes in DNA synthesis after induced follicular atresia. Biol. Reprod. 41:175–181.CrossRefGoogle Scholar
  32. Hanahan, D. 1997. Signaling vascular morphogenesis and maintenance. Science 277:4850.CrossRefGoogle Scholar
  33. Hay, M. F., Cran, D. G., and Moor, R. M. 1976. Structural changes occurring during atresia in sheep ovarian follicles. Cell Tissue Res. 169:515–529.PubMedCrossRefGoogle Scholar
  34. Hirschi, K. K., and D’Amore, P. A. 1996. Pericytes in the microvasculature. Cardiovasc. Res. 32:687–696.Google Scholar
  35. Hudlická, O. 1984. Development of microcirculation: capillary growth and adaptation. In: Renkin, E. M., and Michel, C. C., eds. Handbook of Physiology, sec. 2, vol. IV, part 1. Waverly Press, Baltimore, pp. 165–216.Google Scholar
  36. Hunter, M. G. 1991. Characteristics and causes of the inadequate corpus luteum. J. Reprod. Fertil. Suppl. 43:91–99.PubMedGoogle Scholar
  37. Jablonka-Shariff, A., Fricke, P. M., Grazul-Bilska, A. T., Reynolds, L. P., and Redmer, D. A. 1994. Size, number, cellular proliferation, and atresia of gonadotropin-induced follicles in ewes. Biol. Reprod. 51:531–540.CrossRefGoogle Scholar
  38. Jablonka-Shariff, A., Grazul-Bilska, A. T., Redmer, D. A., and Reynolds, L. P. 1993. Growth and cellular proliferation of ovine corpora lutea throughout the estrous cycle. Endocrinology 133:1871–1879.PubMedCrossRefGoogle Scholar
  39. Jablonka-Shariff, A., Grazul-Bilska, A. T., Redmer, D. A., and Reynolds, L. P. 1997. Cellular proliferation and fibroblast growth factors in the corpus luteum during early pregnancy in ewes. Growth Factors 14:15–23.PubMedCrossRefGoogle Scholar
  40. Jones, G. S., Maffezzoli, R. D., Strott, C. A., Ross, G. T., and Kaplan, G. 1970. Pathophysiology of reproductive failure after clomiphene-induced ovulation. Am. J. Obstetric. Gynecol. 108:847–867.Google Scholar
  41. Kamat, B. R., Brown, L. F., Manseau, E. J., Senger, D. R., and Dvorak, H. F. 1995. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells: role in corpus luteum development. Am. J. Pathol. 146:157–165.PubMedGoogle Scholar
  42. Karamardian, L. M., and Grimes, D. A. 1992. Luteal phase deficiency: effect of treatment on pregnancy rates. Am. J. Obstet. Gynecol. 167:1391–1398.PubMedGoogle Scholar
  43. Keisler, D. H., and Keisler, L. W. 1989. Formation and function of GnRH-induced subnormal corpora lutea in cyclic ewes. J. Reprod. Fertil. 87:265–273.PubMedCrossRefGoogle Scholar
  44. Klagsbrun, M., and D’Amore, P. A. 1991. Regulators of angiogenesis. Annu. Rev. Physiol. 53:217–239.CrossRefGoogle Scholar
  45. Koos, R. D. 1993. Ovarian angiogenesis. In: Adashi, E. Y., and Leung, P. C. K., eds. The Ovary. Raven Press, New York, pp. 433–453.Google Scholar
  46. Koos, R. D. 1995. Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biol. Reprod. 52:1426–1435.CrossRefGoogle Scholar
  47. Lamming, G. E., Darwash, A. O., and Back, H. L. 1989. Corpus luteum function in dairy cows and embryo mortality. J. Reprod. Fertil. Suppl. 37:245–252.PubMedGoogle Scholar
  48. Lei, Z. M., Chegini, N., and Rao, C. V. 1991. Quantitative cell composition of human and bovine corpora lutea from various reproductive states. Biol. Reprod. 44:1148–1156.CrossRefGoogle Scholar
  49. McNatty, K. P., Dobson, C., Gibb, M., Kieboom, L. E., and Thurley, D. C. 1981. Accumulation of luteinizing hormone, oestradiol and androstenedione by sheep ovarian follicles in vivo. J. Endocrinol. 91:99–109.PubMedCrossRefGoogle Scholar
  50. Moor, R. M., and Seamark, R. F. 1986. Cell signaling, permeability, and microvasculatory changes during antral follicle development in mammals. J. Dairy Sci. 69:927–943.PubMedCrossRefGoogle Scholar
  51. Nalbandov, A. V., and James, M. F. 1949. The blood-vascular system of the chicken ovary. Am. J. Anat. 85:347–377.PubMedCrossRefGoogle Scholar
  52. Neeman, M., Abramovitch, R., Schiffenbauer, Y. S., and Tempel, C. 1997. Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int. J. Exp. Pathol. 78:57–70.PubMedCrossRefGoogle Scholar
  53. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22.PubMedGoogle Scholar
  54. Neufeld, G., Ferrara, N., Schweigerer, L., Mitchell, R., and Gospodarowicz, D. 1987. Bovine granulosa cells produce basic fibroblast growth factor. Endocrinology 121:597–603.PubMedCrossRefGoogle Scholar
  55. Nicosia, S. V., Diaz, J., Nicosia, R. F., Saunders, B. O., and Muro-Cacho, C. 1995. Cell proliferation and apoptosis during development and aging of the rabbit corpus luteum. Ann. Clin. Lab. Sci. 25:143–157.PubMedGoogle Scholar
  56. Niswender, G. D., and Nett, T. M. 1988. The corpus luteum and its control. In: Knobil, E., and Neill, J. D., et al, eds. The Physiology of Reproduction. Raven Press, New York, pp. 489–525.Google Scholar
  57. Nomura, M., Yamagishi, S., Harada, S., Hayashi, Y., Yamashima, T., Yamashita, J., and Yamamoto, H. 1995. Possible participation of autocrine and paracine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J. Biol. Chem. 270:28316–28324.PubMedCrossRefGoogle Scholar
  58. Phillips, H. S., Hains, J., Leung, D. W., and Ferrara, N. 1990. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127:965–967.PubMedCrossRefGoogle Scholar
  59. Quintal-Franco, J. A., Kojima, F. N., Melvin, E. J., Lindsey, B. R., Zanella, E., Fike, K. E., Wehrman, M. E., Clopton, D. T., and Kinder, J. E. 1999. Corpus luteum development and function in cattle with episodic release of luteinizing hormone pulses inhibited in the follicular and early luteal phases of the estrous cycle. Biol. Reprod. 61:921–926.CrossRefGoogle Scholar
  60. Ravindranath, N., Little-Ihrig, L., Phillips, H. S., Ferrara, N., and Zeleznik, A. J. 1992. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131:254–260.PubMedCrossRefGoogle Scholar
  61. Redmer, D. A., Dai, Y., Li, J., Charnock-Jones, D. S., Smith, S. K., Reynolds, L. P., and Moor, R. M. 1996. Characterization and expression of vascular endothelial growth factor (VEGF) in the ovine corpus luteum. J. Reprod. Fertil. 108:157–165.PubMedCrossRefGoogle Scholar
  62. Redmer, D. A., Grazul, A. T., Kirsch, J. D., and Reynolds, L. P. 1988. Angiogenic activity of bovine corpus luteum at several stages of luteal development. J. Reprod. Fertil. 82:627–634.PubMedCrossRefGoogle Scholar
  63. Redmer, D. A., Kirsch, J. D., and Grazul, A. T. 1987. In vitro production of angiotropic factor by bovine corpus luteum partial characterization of activities that are chemotactic and mitogenic foe endothelial cells. In: Mahesh, V. B., Dhindsa, D. S., Anderson, E., and Kalra, S. P., eds. Regulation of Ovarian and Testicular Function. Advances in Experimental Medical Biology, vol. 219. Plenum Press, New York, pp. 683–688.CrossRefGoogle Scholar
  64. Redmer, D. A., Kirsch, J. D., and Reynolds, L. P. 1991. Production of mitogenic factors by cell types of estrogen-active and estrogen-inactive preovulatory bovine follicles. J. Anim. Sci. 69:237–245.PubMedGoogle Scholar
  65. Redmer, D. A., McDonald, H. E., Klemin, P. L., Kirsch, J. D., Kraft, K. C., Johnson, M. L., Reynolds, L. P., and Grazul-Bilska, A. T. 1999. Media conditioned by granulosa cells from bovine follicles stimulates pericyte migration. Biol. Reprod. 60(suppl 1):172.Google Scholar
  66. Redmer, D. A., and Reynolds, L. P. 1996. Angiogenesis in the ovary. Rev. Reprod. 1:182–192.PubMedCrossRefGoogle Scholar
  67. Reynolds, L. P. 1986. Utero-ovarian interactions during early pregnancy: role of conceptus-induced vasodilation. J. Anim. Sci. 62(suppl 2):47–61.PubMedGoogle Scholar
  68. Reynolds, L. P., Grazul-Bilska A. T., and Redmer D. A. 2000. Angiogenesis in the corpus luteum. Endocrine 12:1–10.PubMedCrossRefGoogle Scholar
  69. Reynolds, L. P., Killilea, S. D., and Redmer, D. A. 1992. Angiogenesis in the female reproductive system. FASEB J. 6:886–892.PubMedGoogle Scholar
  70. Reynolds, L. P., Killilea, S. D., Grazul-Bilska, A. T., and Redmer, D. A. 1994. Mitogenic factors of corpora lutea. Prog. Growth Factor Res. 5:159–175.CrossRefGoogle Scholar
  71. Reynolds, L. P., and Redmer, D. A. 1995. Utero-placental vascular development and placental function. J. Anim. Sci. 73:1839–1851.Google Scholar
  72. Reynolds, L. P., and Redmer D. A. 1998. Expression of the angiogenic factors, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), in the ovary. J. Anim. Sci. 76:1671–1681.PubMedGoogle Scholar
  73. Ricke, W. A., Redmer, D. A., and Reynolds, L. P. 1995. Initial characterization of mitogenic factors produced by porcine corpora lutea throughout the estrous cycle. Biol. Reprod. 52(suppl 1):112.Google Scholar
  74. Ricke, W. A., Redmer, D. A., and Reynolds, L. P. 1999. Growth and cellular proliferation of porcine corpora lutea throughout the oestrous cycle. J. Reprod. Fenil. 117:369–377.CrossRefGoogle Scholar
  75. Shifren, J. L., Doldi, N., Ferrara, N., Mesiano, S., and Jaffe, R. B. 1994. In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: Implications for mode of action. J. Clin. EndocrinoL Metab. 79:316–322.PubMedCrossRefGoogle Scholar
  76. Short, R. E., Bellows, R. A., Staigmiller, R. B., Berardinelli, J. G., and Custer, E. E. 1990. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. J. Anim. Sci. 68:799–816.PubMedGoogle Scholar
  77. Silvester, L. M., and Luck, M. R. 1999. Distribution of extracellular matrix components in the developing ruminant corpus luteum: a wound repair hypothesis for luteinization. J. Reprod. Fertil. 116:187–198.PubMedCrossRefGoogle Scholar
  78. Smith, G. D., Sawyer, H. R., Mirando, M. A., Griswold, M. D., Sadhu, A., and Reeves, J. J. 1996. Steady-state luteinizing hormone receptor messenger ribonucleic acid levels and endothelial cell composition in bovine normal-and short-lived corpora lutea. Biol. Reprod. 55:902–909.CrossRefGoogle Scholar
  79. Smith, S. K., Lenton, E. A., Landren, B. M., and Cooke, I. D. 1985. Is the short luteal phase a defective luteal phase? Ann. NY Acad. Sci. 442:387–390.PubMedCrossRefGoogle Scholar
  80. Soules, M. R., Wiebe, R. H., Askel, S., and Hammond, C. B. 1977. The diagnosis and therapy of luteal phase deficiency. Fertil. Steril. 29:1033–1037.Google Scholar
  81. Stirling, D. T., Waterman, M. F., and Simpson, E. R. 1991. Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured cells. J. Reprod. Fertil. 91:1–8.PubMedCrossRefGoogle Scholar
  82. Swann, R. T., and Bruce, N. W. 1987. Oxygen consumption, carbon dioxide production and progestagen secretion in the intact ovary of the day-16 pregnant rat. J. Reprod. Fertil. 80:599–605.PubMedCrossRefGoogle Scholar
  83. Taraska, T., Reynolds, L. P., and Redmer, D. A. 1989. In vitro secretion of angiogenic activity by ovine follicles. In: Hirshfield, A. N., ed. Growth Factors and the Ovary. Plenum Press, New York, pp. 267–272.Google Scholar
  84. Tilly, J. L., Billig, H., Kowalski, K. I., and Hsueh, A. J. W. 1992. Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-dependent mechanism. Mol. Endocrinol. 6:1942–1950.Google Scholar
  85. Toutges, M. J., Grazul-Bilska, A. T., Kirsch, J. D., Reynolds, L. P., and Redmer, D. A. 1999. Effects of luteinizing hormone (LH) and oxygen (02) levels on vascular endothelial growth factor (VEGF) mRNA expression by ovine luteal cells in culture. BioL Reprod. 60(suppl 1):280.Google Scholar
  86. Wordinger, R. J., Brun-Zinkernagel, A.-M., and Chang, I.-F. C. 1993. Immunohistochemical localization of basic fibroblast growth factor (bFGF) within growing and atretic mouse ovarian follicles. Growth Factors 9:279–289.PubMedCrossRefGoogle Scholar
  87. Yamagishi, S.-I., Yonekura, H., Yamamoto, Y., Fujimori, H., Sakurai, S., Tanake, N., and Yamamoto, H. 1999. Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab. Invest. 79:501–509.Google Scholar
  88. Yan, Z., Weich, H. A., Bernart, W., Breckwoldt, M., and Neulen, J. 1993. Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro. J. Clin. Endocrinol. Metab. 77:1723–1725.PubMedCrossRefGoogle Scholar
  89. Yasuda, T., Grinspan, J., Stern, J., Franceschini, B., Bannerman, P., and Pleasure, D. 1995. Apoptosis occurs in the oligodendroglial lineage, and is prevented by basic fibroblast growth factor. J. Neurosci. Res. 40:306–317.PubMedCrossRefGoogle Scholar
  90. Zeleznik, A. J., Schuler, H. M., and Reichert, L. E. 1981. Gonadotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109:356–361.PubMedCrossRefGoogle Scholar
  91. Zheng, J., Redmer, D. A., and Reynolds, L. P. 1993. Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biol. Reprod. 49:1177–1189.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Anna T. Grazul-Bilska
  • Dale A. Redmer
  • Lawrence P. Reynolds

There are no affiliations available

Personalised recommendations