Vascular Morphogenesis in the Ovary: Introduction and Overview

  • Hellmut G. Augustin
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Vascular morphogenetic processes in the ovary occur cyclically as well as in association with pregnancy. Folliculogenesis and particularly the growth of the corpus luteum are intimately linked to the growth of blood vessels. This chapter gives an overview of the cyclic changes of the vasculature in the ovary. Focusing on the corpus luteum (CL), the temporal changes of the ovarian CL vasculature are discussed. The histomorphologic changes of the vasculature during the cyclic processes in the ovary are reviewed based on our current knowledge of the underlying molecular mechanisms of angiogenesis. Some comparative aspects between ovarian and tumor angiogenesis are incorporated to highlight similarities as well as differences between physiologic and pathologic angiogenesis. This introductory chapter is complemented by more specialized chapters on angiogenic cytokines (particularly heparin-binding growth factors) that regulate ovarian angiogenesis (Chapter 7); on the most critical regulator of ovarian angiogenesis, vascular endothelial growth factor (VEGF) (Chapter 8); on the hormonal regulation of angiogenesis and the regulation of the vascular system through the endocrine system (Chapter 9); and on the analysis of angiogenic processes in ovarian tumors (Chapter 10). Together, these chapters provide a comprehensive update of the current knowledge in the field of ovarian angiogenesis and demonstrate the functional relevance of ovarian angiogenesis for proper reproductive function and for a critical assessment of physiologic reproductive angiogenic processes in comparison to pathologic angiogenesis as it is associated with the growth of tumors.


Vascular Endothelial Growth Factor Granulosa Cell Corpus Luteum Ovarian Cycle Luteal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abulafia, O., and Sherer, D. M. 2000. Angiogenesis of the ovary. Am. J. Obstet. Gynecol. 182:240–246.PubMedGoogle Scholar
  2. Alon, T., Hemo, I., Itin, A., Pe’er, J., Stone, J., and Keshet, E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1:1024–1028.PubMedGoogle Scholar
  3. Augustin, H. G. 1998. Antiangiogenic tumour therapy: will it work? Trends Pharmacol. Sci. 19:216–222.PubMedGoogle Scholar
  4. Augustin, H. G. 2000. Development of the vascular system in the corpus luteum. In: Risau W., Rubanyi G., eds. Morphogenesis of Endothelium. Harwood Academic Publishers, Amsterdam, pp. 237–255.Google Scholar
  5. Augustin, H. G., Braun, K., Telemenakis, I., Modlich, U., and Kuhn, W. 1995. Ovarian angiogenesis: phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression. Am. J. Pathol. 147:1–13.Google Scholar
  6. Bacci, M. L., Barazzoni, A. M., Forni, M., and Costerbosa, G. L. 1996. In situ detection of apoptosis in regressing corpus luteum of pregnant sow: evidence of an early presence of DNA fragmentation. Domest. Anim. Endocrinol. 13:361–372.PubMedGoogle Scholar
  7. Bassett, D. L. 1943. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73:251–291.Google Scholar
  8. Beck, L., and D’Amore, P. A. 1997. Vascular development: cellular and molecular regulation. FASEB J. 11:365–373.PubMedGoogle Scholar
  9. Benjamin, L. E., Hemo, I., and Keshet, E. 1998. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598.PubMedGoogle Scholar
  10. Benjamin, L. E., and Keshet, E. 1997. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl. Acad. Sci. USA 94:8761–8766.PubMedGoogle Scholar
  11. Boehm, T., Folkman, J., Browder, T., and O’Reilly, M. S. 1997. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407.PubMedGoogle Scholar
  12. Carmeliet, P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6:389–395.PubMedGoogle Scholar
  13. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439.PubMedGoogle Scholar
  14. Christenson, L. K., and Stouffer, R. L. 1997. Follicle-stimulating hormone and luteinizing hormone/chorionic gonadotropin stimulation of vascular endothelial growth factor production by macaque granulosa cells from pre-and periovulatory follicles. J. Clin. Endocrinol. Metab. 82:2135–2142.PubMedGoogle Scholar
  15. Claffey, K. P., and Robinson, G. S. 1996. Regulation of VEGF/VPF expression in tumor cells: consequences for tumor growth and metastasis. Cancer Metastasis Rev. 15:165–176PubMedGoogle Scholar
  16. Davis, S., and Yancopoulos, G. D. 1999. The angiopoietins: Yin and Yang in angiogenesis. Curr. Top. Microbiol. Immunol. 237:173–185.PubMedGoogle Scholar
  17. Dono, R., Texido, G., Dussel, R., Ehmke, H., and Zeller, R. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17:4213–4225.PubMedGoogle Scholar
  18. Doraiswamy, V., Grazul-Bilska, A. T., Ricke, W. A., Redmer, D. A., and Reynolds, L. P. 1995. Immunoneutralization of angiogenic activity from ovine corpora lutea (CL) with antibodies against fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF). Biol. Reprod. 52(suppl 1):112.Google Scholar
  19. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F., and Dvorak, A. M. 1999. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol Immunol. 237:97–132.PubMedGoogle Scholar
  20. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., and Augustin, H. G. 2000. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60:1388–1393.PubMedGoogle Scholar
  21. Ferrara, N. 1999. Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 77:527–543.PubMedGoogle Scholar
  22. Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442.PubMedGoogle Scholar
  23. Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., Chisholm, V., Hillan, K. J., and Schwall, R. H. 1998. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4:336–340.PubMedGoogle Scholar
  24. Folkman, J. 1996. Fighting cancer by attacking its blood supply. Sci. Am. 275:150–154.PubMedGoogle Scholar
  25. Fotsis, T., Zhang, Y., Pepper, M. S., Adlercreutz, H., Montesano, R., Nawroth, P. P., and Schweigerer, L. 1994. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368:237–239.PubMedGoogle Scholar
  26. Fraser, H. M., Dickson, S. E., Lunn, S. F., Wulff, C., Morris, K. D., Carroll, V. A., and Bicknell, R. 2000. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141:995–1000.PubMedGoogle Scholar
  27. Fraser, H. M., Lunn, S. F., Harrison, D. J., and Kerr, J. B. 1999. Luteal regression in the primate: different forms of cell death during natural and gonadotropin-releasing hormone antagonist or prostaglandin analogue-induced luteolysis. Biol. Reprod. 61:1468–1479.PubMedGoogle Scholar
  28. Gaede, S. D., Sholley, M. M., and Quattropani, S. L. 1985. Endothelial mitosis during the initial stages of corpus luteum neovascularization in the cycling adult rat. Am. J. Anat. 172:173–180.PubMedGoogle Scholar
  29. Gagliardi, A. R., and Collins, D. C. 1993. Inhibition of angiogenesis by antiestrogens. Cancer Res. 153:533–535.Google Scholar
  30. Gale, N. W., and Yancopoulos, G. D. 1999. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 13:1055–1066.PubMedGoogle Scholar
  31. Goede, V., Borgelli, L., Ziche, M., and Augustin, H. G. 1999. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1 (MCP-1). Int. J. Cancer 82:765–770.PubMedGoogle Scholar
  32. Goede, V., Schmidt, T., Kimmina, S., Kozian, D. H., and Augustin, H. G. 1998. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78:1385–1394.PubMedGoogle Scholar
  33. Goldberg, I. D., and Rosen, E. M. 1997. Regulation of Angiogenesis. Basel: Birkhäuser.Google Scholar
  34. Gospodarowicz, D., Cheng, J., Lui, G. M., Baird, A., Esch, F., and Böhlen, P. 1985. Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117:2383–2391.PubMedGoogle Scholar
  35. Gospodarowicz, D., and Thakral, K. K. 1978. Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl. Acad. Sci. USA 75:847–851.PubMedGoogle Scholar
  36. Grazul-Bilska, A. T., Redmer, D. A., Killilea, S. D., Kraft, K. C., Reynolds L. P. 1992. Production of mitogenic factor(s) by ovine corpora lutea throughout the cycle. Endocrinology 130:3625–3632.PubMedGoogle Scholar
  37. Hanahan, D. 1997. Signaling vascular morphogenesis and maintenance. Science 277:48–50. Harris, A. L. 1997. Antiangiogenesis for cancer therapy. Lancet 349(suppl 2):13–15. Höflinger, H. 1948. Das Ovar des Rindes in den verschiedenen Lebensperioden unter besonderer Berücksichtigung seiner funktionellen Feinstruktur. Acta Anat suppl 5. pp. 1–164.Google Scholar
  38. Hossain, M. I., and O’Shea, J. D. 1981. Vascular changes during regression of the corpus luteum of the guinea pig. Aust. J. Biol. Sci. 34:649–660.PubMedGoogle Scholar
  39. Ichikawa, S., Uchino, S., and Hirata, Y. 1987. Lymphatic and blood vasculature of the forming corpus luteum. Lymphology 20:73–83.PubMedGoogle Scholar
  40. Ikeda, E., Achen, M. G., Breier, G., and Risau, W. 1995. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J. Biol. Chem. 270:19761–19766.PubMedGoogle Scholar
  41. Jakob, W., Jentzsch, K. D., Mauersberger, B., and Oehme, P. 1977. Demonstration of angiogenesis-activity in the corpus luteum of cattle. Exp. Pathol. 13:231–236.Google Scholar
  42. Jeltsch, M., Kaipainen, A., Joukov, V., Meng, X., Lakso, M., Rauvala, H., Swartz, M., Fukumura, D., Jain, R. K., and Alitalo, K. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425.PubMedGoogle Scholar
  43. Johns, A., Freay, A. D., Fraser, W., Korach, K. S., and Rubanyi, G. M. 1996. Disruption of estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in transgenic mice. Endocrinology 137:4511–4513.PubMedGoogle Scholar
  44. Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. W., Fang, G. H., Dumont, D., Breitman, M., and Alitalo, K. 1995. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92:3566–3570.PubMedGoogle Scholar
  45. Kamat, B. R., Brown, L. F., Manseau, E. J., Senger, D. R., and Dvorak, H. F. 1995. Expression of vascular permeability factor/vascular endothelial growth factor by human granulosa and theca lutein cells: role in corpus luteum development. Am. J. Pathol. 146:157–165.PubMedGoogle Scholar
  46. Kim-Schulze, S., McGowan, K. A., Hubchak, S. C., Cid, M. C., Martin, M. B., Kleinman, H. K., Greene, G. L., and Schnaper, H. W. 1996. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 94:1402–1407.Google Scholar
  47. Klauber, N., Parangi, S., Flynn, E., Hamel, E., and D’Amato, R. J. 1997b. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 57:81–86.Google Scholar
  48. Klauber, N., Rohan, R. M., Flynn, E., and D’Amato, R. J. 1997a. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat. Med. 4:443–446.Google Scholar
  49. Koos, R. D. 1986. Stimulation of endothelial cell proliferation by rat granulosa cell-conditioned medium. Endocrinology 119:481–489.PubMedGoogle Scholar
  50. Kozian, D. H., Ziche, M., and Augustin, H. G. 1997. The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab. Invest. 76:267–276.PubMedGoogle Scholar
  51. Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C. 1997. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245.PubMedGoogle Scholar
  52. Lobb, D. K., and Dorrington, J. H. 1993. Transforming growth factor-alpha: identification in bovine corpus luteum by immunohistochemistry and Northern blot analysis. Reprod. Fertil. Dev. 5:523–529.PubMedGoogle Scholar
  53. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D. 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.PubMedGoogle Scholar
  54. Makris, A., Ryan, K. J., Yasumizu, T., Hill, C. L., and Zetter, B. R. 1984. The nonluteal porcine ovary as a source of angiogenic activity. Endocrinology 115:1672–1677.PubMedGoogle Scholar
  55. Matsushima, T., Fukuda, Y., Tsukada, K., and Yamanaka, N. 1996. The extracellular matrices and vascularization of the developing corpus luteum in rats. J. Submicrosc. Cytol. Pathol. 28:441–455.PubMedGoogle Scholar
  56. McClure, N., Healy, D. L., Rogers, P. A., Sullivan, J., Beaton, L., Haning, R. V., Connolly, D. T., and Robertson, D. M. 1994. Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet 344:235–236.PubMedGoogle Scholar
  57. McLaren, J., Prentice, A., Charnock-Jones, D. S., Millican, S. A., Muller, K. H., Sharkey, A. M., and Smith, S. K. 1996. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98:482–489.PubMedGoogle Scholar
  58. Messinis, I. E. 1997. Luteal function-luteolysis. Ann N. Y. Acad. Sci. 816:151–157.Google Scholar
  59. Meyer, G. T., and McGeachie, J. K. 1988. Angiogenesis in the developing corpus luteum of pregnant rats: a stereologic and autoradiographic study. Anat. Rec. 222:18–25.PubMedGoogle Scholar
  60. Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H. G., Ziche, M., Lanz, C., Büttner, M., Rziha, H. J., and Dehio, C. 1999. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18:363–374.PubMedGoogle Scholar
  61. Modlich, U., Kaup, F. J., and Augustin, H. G. 1996. Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab. Invest. 74:771–780.PubMedGoogle Scholar
  62. Morales, D. E., McGowan, K. A., Grant, D. S., Maheshwari, S., Bhartiya, D., Cid, M. C., Kleinman, H. K., and Schnaper, H. W. 1995. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 91:755–763.PubMedGoogle Scholar
  63. Murdoch, W. J., and Steadman, L. E. 1991. Investigations concerning the relationship of ovarian eosinophilia to ovulation and luteal function in the sheep. Am. J. Reprod. Immunol. 25:81–87.PubMedGoogle Scholar
  64. Naftalin, D. M., Bove, S. E., Keyes, P. L., and Townson, D. H. 1997. Estrogen withdrawal induces macrophage invasion in the rabbit corpus luteum. Biol. Reprod. 56:1175–1180.PubMedGoogle Scholar
  65. Nakamura, J., Savinov, A., Lu, Q., and Brodie, A. 1996. Estrogen regulates vascular endothelial growth/permeability factor expression in 7,12-dimethylbenz(a)anthraceneinduced rat mammary tumors. Endocrinology 137:5589–5596.PubMedGoogle Scholar
  66. Neufeld, G., Cohen, T., Gengrinovitch, S., and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22.PubMedGoogle Scholar
  67. Neufeld, G., Ferrara, N., Schweigerer, L., Mitchell, R., and Gospodarowicz, D. 1987. Bovine granulosa cells produce basic fibroblast growth factor. Endocrinology 121:597–603.PubMedGoogle Scholar
  68. Neulen, J., Yan, Z., Raczek, S., Weindel, K., Keck, C., Weich, H. A., Marme, D., and Breckwoldt, M. 1995. Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: importance in ovarian hyperstimulation syndrome. J. Clin. Endocrinol. Metab. 80:1967–1971.PubMedGoogle Scholar
  69. Olofsson, B., Jeltsch, M., Eriksson, U., and Alitalo, K. 1999. Current biology of VEGF-B and VEGF-C. Curr. Opin. Biotech. 10:528–535.PubMedGoogle Scholar
  70. Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M., and Basilico, C. 1998. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA 95:5672–5677.PubMedGoogle Scholar
  71. Otsuki, Y., Magari, S., and Sugimoto, O. 1987. Fine structure and morphometric analysis of lymphatic capillaries in the developing corpus luteum of the rabbit. Lymphology 20:64–72.PubMedGoogle Scholar
  72. Peters, H., and McNatty, K. P. 1980. Morphology of the ovary. In: Peters, H., and McNatty, K. P., eds. The Ovary: a Correlation of Structure and Function in Mammals. Granada Publishing, London, pp. 12–35.Google Scholar
  73. Petrovska, M., Dimitrov, D. G., and Michael, S. D. 1996. Quantitative changes in macrophage distribution in normal mouse ovary over the course of the estrous cycle examined with an image analysis system. Am. J. Reprod. Immunol. 36:175–183.PubMedGoogle Scholar
  74. Phillips, H. S., Hains, J., Leung, D. W., and Ferrara, N. 1990. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127:965–967.PubMedGoogle Scholar
  75. Ravindranath, N., Little-Ihrig, L., Phillips, H. S., Ferrara, N., and Zeleznik, A. J. 1992. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131:254–260.PubMedGoogle Scholar
  76. Re, F., Zanetti, A., Sironi, M., Polentarutti, N., Lanfrancone, L., Dejana, E., and Colotta, A. 1994. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J. Cell Biol. 127:537–546.PubMedGoogle Scholar
  77. Reynolds, L. P., and Redmer, D. A. 1998. Expression of the angiogenic factors, basic fibroblast growth factor and vascular endothelial growth factor, in the ovary. J. Anim. Sd. 76:1671–1681.Google Scholar
  78. Reynolds, L. P., and Redmer, D. A. 1999. Growth and development of the corpus luteum. J. Reprod. Fertil 54(suppl):181–191.Google Scholar
  79. Reynolds, L. P., Grazul-Bilska, A. T., Killilea, S. D., and Redmer, D. A. 1994. Mitogenic factors of corpora lutea. Prog. Growth Factor Res. 5:159–175.PubMedGoogle Scholar
  80. Reynolds, L. P., Killilea, S. D., and Redmer, D. A. 1992. Angiogenesis in the female reproductive system. FASEB J. 6:886–892.PubMedGoogle Scholar
  81. Richards, J. S. 1980. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol. Rev. 60:51–89.PubMedGoogle Scholar
  82. Risau, W. 1997. Mechanisms of angiogenesis. Nature 386:671–674.PubMedGoogle Scholar
  83. Rizk, B., Aboulghar, M., Smitz, J., and Ron-El, R. 1997. The role of vascular endothelial growth factor and interleukins in the pathogenesis of severe ovarian hyperstimulation syndrome. Hum. Reprod. Update 3:255–266.PubMedGoogle Scholar
  84. Rodger, F. E., Young, F. M., Fraser, H. M., and Illingworth, P. J. 1997. Endothelial cell proliferation follows the mid-cycle luteinizing hormone surge, but not human chorionic gonadotrophin rescue, in the human corpus luteum. Hum. Reprod. 12:1723–1729.PubMedGoogle Scholar
  85. Rone, J. D., and Goodman, A. L. 1990. Preliminary characterization of angiogenic activity in media conditioned by cells from luteinized rat ovaries. Endocrinology 127:2821–2828.PubMedGoogle Scholar
  86. Rone, J. D., Halvorson, L. M., and Goodman A. L. 1993. Ovarian angiogenesis in rabbits: endotheliotrophic chemoattractant activity from isolated follicles and dispersed granulosa cells. J. Reprod. Fertil. 97:359–365.PubMedGoogle Scholar
  87. Ruoslahti, E., and Reed, J. C. 1994. Anchorage dependence, integrins, and apoptosis. Cell 77:477–478.PubMedGoogle Scholar
  88. Sato, E., Ishibashi, T., and Koide, S. S. 1982. Inducement of blood vessel formation by ovarian extracts from mice injected with gonadotropins. Experientia 15:1248–1249. Sawyer, H. R. 1995. Structural and functional properties of the corpus luteum of pregnancy. J. Reprod. Fertil. Suppl. 49:97–110.Google Scholar
  89. Schnaper, H. W., McGowan, K A, Kim-Schulze, S., and Cid, M. C. 1996. Oestrogen and endothelial cell angiogenic activity. Clin. Exp. Pharmacol. Physiol. 23:247–250.PubMedGoogle Scholar
  90. Shifren, J. L., Tseng, J. F., Zaloudek, C. J., Ryan, I. P., Meng, Y. G., Ferrara, N., Jaffe, R. B., and Taylor, R. N. 1996. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 81:3112–3118.PubMedGoogle Scholar
  91. Shikone, T., Yamoto, M., Kokawa, K., Yamashita, K., Nishimori, K., and Nakano, R. 1996. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J. Clin. Endocrinol. Metab. 81:2376–2380.PubMedGoogle Scholar
  92. Shweiki, D., Itin, A., Neufeld, G., Gitay-Goren, H., and Keshet E. 1993. Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally regulated angiogenesis. J. Clin. Invest. 91:2235–2243.PubMedGoogle Scholar
  93. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.PubMedGoogle Scholar
  94. Stirling, D., Waterman, M. R., and Simpson, E. R. 1991. Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured luteal cells. J. Reprod. Fertil. 91:1–8.PubMedGoogle Scholar
  95. Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. 1996. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 27:1171–1180.Google Scholar
  96. Takaya, R., Fukaya, T., Sasano, H., Suzuki, T., Tamura, M., and Yajima, A. 1997. Macrophages in normal cycling human ovaries; immunohistochemical localization and characterization. Hum. Reprod. 12:1508–1512.PubMedGoogle Scholar
  97. Teerds, K. J., and Dorrington, J. H. 1992. Immunohistochemical localization of transforming growth factor-beta 1 and -beta 2 during follicular development in the adult rat ovary. Mol. Cell. Endocrinol. 84:R7–R13.PubMedGoogle Scholar
  98. Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. 1999. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514.PubMedGoogle Scholar
  99. Tisdall, D. J., Hudson, N., Smith, P., and McNatty, K. P. 1994. Localization of ovine follistatin and alpha and beta A inhibin mRNA in the sheep ovary during the oestrous cycle. J. Mol. Endocrinol. 12:181–193.PubMedGoogle Scholar
  100. Townson, D. H., Warren, J. S., Flory, C. M., Naftalin, D. M., and Keyes, P. L. 1996. Expression of monocyte chemoattractant protein-1 in the corpus luteum of the rat. Biol. Reprod. 54:513–520.PubMedGoogle Scholar
  101. Tsukada, K., Matsushima, T., and Yamanaka, N. 1996. Neovascularization of the corpus luteum of rats during the estrus cycle. Pathol. Int. 46:408–416.PubMedGoogle Scholar
  102. Vinatier, D., Dufour, P., Tordjeman-Rizzi, N., Prolongeau, J. F., Depret-Moser, S., and Monnier, J. C. 1995. Immunological aspects of ovarian function: role of the cytokines. Eur. J. Obstet. Gynecol. Reprod. Biol. 63:155–168.PubMedGoogle Scholar
  103. Wiltbank, M. C. 1994. Cell types and hormonal mechanisms associated with mid-cycle corpus luteum function. J. Anim. Sci. 72:1873–1883.PubMedGoogle Scholar
  104. Wiltbank, M. C., Gallagher, K. P., Christensen, A. K., Brabec, R. K., and Keyes, P. L. 1990. Physiological and immunocytochemical evidence for a new concept of blood flow regulation in the corpus luteum. Biol. Reprod. 42:139–149.PubMedGoogle Scholar
  105. Yamamoto, T., Terada, N., Nishizawa, Y., and Petrow, V. 1994. Angiostatic activities of medroxyprogesterone acetate and its analogues. Int. J. Cancer 56:393–399.PubMedGoogle Scholar
  106. Yan, Z., Weich, H. A., Bernart, W., Breckwoldt, M., and Neulen, J. 1993. Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro. J. Clin. Endocrinol. Metab. 77:1723–1725.PubMedGoogle Scholar
  107. Young, F. M., Rodger, F. E., Illingworth, P. J., and Fraser, H. M. 2000. Cell proliferation and vascular morphology in the marmoset corpus luteum. Hum. Reprod. 15:557–566.PubMedGoogle Scholar
  108. Zeleznik, A. J., Schuler, H. M., and Reichert, L. E. 1981. Gonadotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109:356–362.PubMedGoogle Scholar
  109. Zheng, J., Fricke, P. M., Reynolds, L. P., and Redmer, D. A. 1994. Evaluation of growth, cell proliferation, and cell death in bovine corpora lutea throughout the estrous cycle. Biol. Reprod. 51:623–632.PubMedGoogle Scholar
  110. Zheng, J., Redmer, D. A., and Reynolds, L. P. 1993. Vascular development and heparin-binding growth factors in the bovine corpus luteum at several stages of the estrous cycle. Biot Reprod. 49:1177–1189. Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hellmut G. Augustin

There are no affiliations available

Personalised recommendations