Advertisement

Oncogenes, Anti-Oncogenes, and Genetic Regulators of Vascular Development

  • Timothy F. Lane
  • Alicia Collado-Hidalgo
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)

Abstract

The architecture of all tissue represents the cumulative actions of many genes. Similarly, the phenotype of tumors is the product of successive genetic lesions that alter the function and regulation of oncogenes, tumor-suppressors, and modifier genes. A key stage of both tissue development and tumor progression is the recruitment of a vascular network.

Keywords

Vascular Endothelial Growth Factor Transgenic Mouse Mammary Tumor Genetic Regulator Mouse Mammary Tumor Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale, N. W., Deutsch, U., Risau, W., and Klein, R. 1999. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13:295–306.PubMedCrossRefGoogle Scholar
  2. Aird, W. C., Jahroudi, N., Weiler-Guettler, H., Rayburn, H. B., and Rosenberg, R. D. 1995. Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc. Natl. Acad. Sci. USA 92:4567–4571.PubMedCrossRefGoogle Scholar
  3. Arthur, H. M., Ure, J., Smith, A. J., Renforth, G., Wilson, D. I., Torsney, E., Charlton, R., Parums, D. V., Jowett, T., Marchuk, D. A., Burn, J., and Diamond, A. G. 2000. Endoglin, an ancillary TGF beta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev. Biol. 217:42–53.PubMedCrossRefGoogle Scholar
  4. Auvinen, M., Laine, A., Paasinen-Sohns, A., Kangas, A., Kangas, L., Saksela, O., Andersson, L. C., and Holtta, E. 1997. Human ornithine decarboxylase-overproducing NIH3T3 cells induce rapidly growing, highly vascularized tumors in nude mice. Cancer Res. 57:3016–3025.Google Scholar
  5. Bader, B. L., Rayburn, H., Crowley, D., and Hynes, R. O. 1998. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha IT integrins. Cell 95:507–519.PubMedCrossRefGoogle Scholar
  6. Benaron, D. A., Contag, P. R., and Contag, C. H. 1997. Imaging brain structure and function, infection and gene expression in the body using light. Philos Trans R Soc Lond. B. Biol. Sci. 352:755–761.PubMedCrossRefGoogle Scholar
  7. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., and Hanahan, D. 1999. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812.PubMedCrossRefGoogle Scholar
  8. Bernstein, A., and Breitman, M. 1989. Genetic ablation in transgenic mice. Mol. Biol. Med. 6:523–530.PubMedGoogle Scholar
  9. Bi, W., Drake, C. J., and Schwarz, J. J. 1999. The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev. Biol. 211:255–267.PubMedCrossRefGoogle Scholar
  10. Block, K. L., and Poncz, M. 1995. Platelet glycoprotein Ilb gene expression as a model of megakaryocyte-specific expression. Stem Cells 13:135–145.PubMedCrossRefGoogle Scholar
  11. Boggio, K., Di Carlo, E., Rovero, S., Cavallo, F., Quaglino, E., Lollini, P. L., Nanni, P., Nicoletti, G., Wolf, S., Musiani, P., and Forni, G. 2000. Ability of systemic interleukin12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res. 60:359–364.PubMedGoogle Scholar
  12. Brocard, J., Feil, R., Chambon, P., and Metzger, D. 1998. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26:4086–4090.PubMedCrossRefGoogle Scholar
  13. Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., Senger, D. R., Connolly, J. L., and Schnitt, S. J. 1995. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol. 26:86–91.PubMedCrossRefGoogle Scholar
  14. Cardiff, R. D., Anver, M. R., Gusterson, B. A., Hennighausen, L., Jensen, R. A., Merino, M. J., Rehm, S., Russo, J., Tavassoli, F. A., Wakefield, L. M., Ward, J. M., and Green, J. E. 2000. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988.PubMedCrossRefGoogle Scholar
  15. Cardiff, R. D., Sinn, E., Muller, W., and Leder, P. 1991. Transgenic oncogene mice. Tumor phenotype predicts genotype. Am. J. Pathol. 139:495–501.PubMedGoogle Scholar
  16. Carmeliet, P., and Collen, D. 1999. Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr. Top. Microbiol. Immunol. 237:133–158.PubMedCrossRefGoogle Scholar
  17. Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., Koch, C. J., Ratcliffe, P., Moons, L., Jain, R. K., Collen, D., Keshert, E., and Keshet, E. 1998. Role of HIF-1 alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490.PubMedCrossRefGoogle Scholar
  18. Carmeliet, P., Lampugnani, M. G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oostuyse, B., Dewerchin, M., Zanetti, A., Angellilo, A., Mattot, V., Nuyens, D., Lutgens, E., Clotman, F., de Ruiter, M. C., Gittenberger-de Groot, A., Poelmann, R., Lupu, F., Herbert, J. M., Collen, D., and Dejana, E. 1999a. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157.CrossRefGoogle Scholar
  19. Carmeliet, P., Mackman, N., Moons, L., Luther, T., Gressens, P., Van Vlaenderen, I., Demunck, H., Kasper, M., Breier, G., Evrard, P., Muller, M., Risau, W, Edgington, T., and Collen, D. 1996. Role of tissue factor in embryonic blood vessel development. Nature 383:73–75.PubMedCrossRefGoogle Scholar
  20. Carmeliet, P., Ng, Y. S., Nuyens, D., Theilmeier, G., Brusselmans, K., Cornelissen, I., Ehler, E., Kakkar, V. V., Stalmans, I., Mattot, V., Perriard, J. C., Dewerchin, M., Flameng, W., Nagy, A., Lupu, F., Moons, L., Collen, D., D’Amore, P. A., and Shima, D. T. 1999b. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat. Med. 5:495–502.CrossRefGoogle Scholar
  21. Christofori, G., and Hanahan, D. 1994. Molecular dissection of multi-stage tumorigenesis in transgenic mice. Semin. Cancer Biol. 5:3–12.PubMedGoogle Scholar
  22. Contag, C. H., Spilman, S. D., Contag, P. R., Oshiro, M., Eames, B., Dennery, P., Stevenson, D. K., and Benaron, D. A. 1997. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem. Photobiol. 66:523–531.PubMedCrossRefGoogle Scholar
  23. Cormier, R. T., Hong, K. H., Halberg, R. B., Hawkins, T. L., Richardson, P., Mulherkar, R., Dove, W. F., and Lander, E. S. 1997. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat. Genet. 17:88–91.PubMedCrossRefGoogle Scholar
  24. Coussens, L. M., Hanahan, D., and Arbeit, J. M. 1996. Genetic predisposition and parameters of malignant progression in K14–HPV16 transgenic mice. Am. J. Pathol. 149:1899–1917.PubMedGoogle Scholar
  25. Cowan, P. J., Shinkel, T. A., Witort, E. J., Barlow, H., Pearse, M. J., and d’Apice, A. J. 1996. Targeting gene expression to endothelial cells in transgenic mice using the human intercellular adhesion molecule 2 promoter. Transplantation 62:155–160.PubMedCrossRefGoogle Scholar
  26. D’Amore, P. A., and Shima, D. T. 1996. Tumor angiogenesis: a physiological process or genetically determined? Cancer Metastasis Rev. 15:205–212.PubMedCrossRefGoogle Scholar
  27. Detmar, M., Brown, L. F., Schon, M. P., Elicker, B. M., Velasco, P., Richard, L., Fukumura, D., Monsky, W., Claffey, K. P., and Jain, R. K. 1998. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J. Invest. Dermatol. 111:1–6.PubMedCrossRefGoogle Scholar
  28. Di Carlo, E., Diodoro, M. G., Boggio, K., Modesti, A., Modesti, M., Nanni, P., Forni, G., and Musiani, P. 1999. Analysis of mammary carcinoma onset and progression in HER2/neu oncogene transgenic mice reveals a lobular origin. Lab Invest. 79:1261–1269.PubMedGoogle Scholar
  29. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.PubMedCrossRefGoogle Scholar
  30. Dove, W. F., Cormier, R. T., Gould, K. A., Halberg, R. B., Merritt, A. J., Newton, M. A., and Shoemaker, A. R. 1998. The intestinal epithelium and its neoplasms: genetic, cellular and tissue interactions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:915–923.PubMedCrossRefGoogle Scholar
  31. Dumont, D. J., Gradwohl, G., Fong, G. H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8:1897–1909.PubMedCrossRefGoogle Scholar
  32. Dumont, D. J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, M., and Alitalo, K. 1998. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949.PubMedCrossRefGoogle Scholar
  33. Eastin, W. C., Haseman, J. K., Mahler, J. F., and Bucher, J. R. 1998. The National Toxicology Program evaluation of genetically altered mice as predictive models for identifying carcinogens. Toxicol. Pathol. 26:461–473.PubMedCrossRefGoogle Scholar
  34. Fagan, K. A., Fouty, B. W., Tyler, R. C., Morris, K. G., Jr., Hepler, L. K., Sato, K., LeCras, T. D., Abman, S. H., Weinberger, H. D., Huang, P. L., McMurtry, I. F., and Rodman, D. M. 1999a. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J. Clin. Invest. 103:291–299.CrossRefGoogle Scholar
  35. Fagan, K. A., Tyler, R. C., Sato, K., Fouty, B. W., Morris, K. G., Jr., Huang, P. L., McMurtry, I. F., and Rodman, D. M. 1999b. Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am. J. Physiol. 277:L472–L478.Google Scholar
  36. Folkman, J., and Hanahan, D. 1991. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp. 22:339–347.PubMedGoogle Scholar
  37. Folkman, J., and Klagsbrun, M. 1987. Angiogenic factors. Science 235:442–427.PubMedCrossRefGoogle Scholar
  38. Fong, G. H., Rossant, J., Gertsenstein, M., and Breitman, M. L. 1995. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70.PubMedCrossRefGoogle Scholar
  39. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K., and Seed, B. 1998. Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725.PubMedCrossRefGoogle Scholar
  40. Fulgham, D. L., Widhalm, S. R., Martin, S., and Coffin, J. D. 1999. FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium 6:185–195.PubMedCrossRefGoogle Scholar
  41. Gambhir, S. S., Barrio, J. R., Herschman, H. R., and Phelps, M. E. 1999. Assays for noninvasive imaging of reporter gene expression. Nucl. Med. Biol. 26:481–490.PubMedCrossRefGoogle Scholar
  42. Gambhir, S. S., Bauer, E., Black, M. E., Liang, Q., Kokoris, M. S., Barrio, J. R., Iyer, M., Namavari, M., Phelps, M. E., and Herschman, H. R. 2000. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 97:2785–2790.PubMedCrossRefGoogle Scholar
  43. Ganss, R., and Hanahan, D. 1998. Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res. 58:4673–4681.PubMedGoogle Scholar
  44. George, E. L., Baldwin, H. S., and Hynes, R. O. 1997. Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90:3073–3081.PubMedGoogle Scholar
  45. Giroux, S., Tremblay, M., Bernard, D., Cardin-Girard, J. F., Aubry, S., Larouche, L., Rousseau, S., Huot, J., Landry, J., Jeannotte, L., and Charron, J. 1999. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9:369–372.PubMedCrossRefGoogle Scholar
  46. Go, C., Li, P., and Wang, X. 1999. Blocking transforming growth factor b signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis. Cancer Res. 59:2861–2868.PubMedGoogle Scholar
  47. Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P. 1990. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87:6624–6628.PubMedCrossRefGoogle Scholar
  48. Gory, S., Vernet, M., Laurent, M., Dejana, E., Dalmon, J., and Huber, P. 1999. The vascular endothelial-cadherin promoter directs endothelial-specific expression in transgenic mice. Blood 93:184–192.PubMedGoogle Scholar
  49. Green, J. E., Shibata, M. A., Yoshidome, K., Liu, M. L., Jorcyk, C., Anver, M. R., Wigginton, J., Wiltrout, R., Shibata, E., Kaczmarczyk, S., Wang, W., Liu, Z. Y., Calvo, A., and Couldrey, C. 2000. The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027.PubMedCrossRefGoogle Scholar
  50. Griep, A. E., Krawcek, J., Lee, D., Liem, A., Albert, D. M., Carabeo, R., Drinkwater, N., McCall, M., Sattler, C., Lasudry, J. G., and Lambert, P. F. 1998. Multiple genetic loci modify risk for retinoblastoma in transgenic mice. Invest. Ophthalmol. Vis. Sci. 39:2723–2732.Google Scholar
  51. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D., and Johnson, R. S. 1999. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 59:1592–1598.PubMedGoogle Scholar
  52. Hanahan, D., and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364.PubMedCrossRefGoogle Scholar
  53. Harats, D., Kurihara, H., Belloni, P., Oakley, H., Ziober, A., Ackley, D., Cain, G., Kurihara, Y., Lawn, R., and Sigal, E. 1995. Targeting gene expression to the vascular wall in trans-genic mice using the murine preproendothelin-1 promoter. J. Clin. Invest. 95:1335–1344.Google Scholar
  54. Herbert, J. M., and Carmeliet, P. 1997. Involvement of u-PA in the anti-apoptotic activity of TGFbeta for vascular smooth muscle cells. FEBS Lett. 413:401–404.PubMedCrossRefGoogle Scholar
  55. Holash, J., Maisonpierre, P. C., Compton, D., Boland, P., Alexander, C. R., Zagzag, D., Yancopoulos, G. D., and Wiegand, S. J. 1999a. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998.CrossRefGoogle Scholar
  56. Holash, J., Wiegand, S. J., and Yancopoulos, G. D. 1999b. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362.CrossRefGoogle Scholar
  57. Huang, Z. F., Higuchi, D., Lasky, N., and Broze, G. J., Jr. 1997. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 90:944–951.PubMedGoogle Scholar
  58. Iruela-Arispe, M. L., and Dvorak, H. F. 1997. Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb. Haemost. 78:672–677.PubMedGoogle Scholar
  59. Iruela-Arispe, M. L., Vazquez, F., and Ortega, M. A. 1999. Antiangiogenic domains shared by thrombospondins and metallospondins, a new family of angiogenic inhibitors. Ann. N. Y. Acad. Sci. 886:58–66.PubMedCrossRefGoogle Scholar
  60. Kappel, A., Ronicke, V., Damert, A., Flamme, I., Risau, W., and Breier, G. 1999. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93:4284–4292.PubMedGoogle Scholar
  61. Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., and Fujisawa, H. 1999. A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902.PubMedGoogle Scholar
  62. Kieser, A., Weich, H. A., Brandner, G., Marme, D., and Kolch, W. 1994. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression. Oncogene 9:963–969.PubMedGoogle Scholar
  63. Kim, H., and Muller, W. J. 1999. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell. Res. 253:78–87.PubMedCrossRefGoogle Scholar
  64. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillet, N., Phillips, H. S., and Ferrara, N. 1993 Inhihition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362:841–844.PubMedCrossRefGoogle Scholar
  65. Kitsukawa, T., Shimono, A., Kawakami, A., Kondoh, H., and Fujisawa, H. 1995. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121:4309–4318.Google Scholar
  66. Korhonen, J., Lahtinen, I., Halmekyto, M., Alhonen, L., Janne, J., Dumont, D., and Alitalo, K. 1995. Endothelial-specific gene expression directed by the tie gene promoter in vivo. Blood 86:1828–1835.PubMedGoogle Scholar
  67. Kozak, K. R., Abbott, B., and Hankinson, O. 1997. ARNT-deficient mice and placental differentiation. Dev. Biol. 191:297–305.Google Scholar
  68. Krause, D. S., Mucenski, M. L., Lawler, A. M., and May, W. S. 1998. CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Exp. Hematol. 26:1086–1092.PubMedGoogle Scholar
  69. Kvanta, A., Steen, B., and Seregard, S. 1996. Expression of vascular endothelial growth factor (VEGF) in retinoblastoma but not in posterior uveal melanoma. Exp. Eye Res. 63:511–518.PubMedCrossRefGoogle Scholar
  70. Kwee, L., Burns, D. K., Rumberger, J. M., Norton, C., Wolitzky, B., Terry, R., LombardGillooly, K. M., Shuster, D. J., Kontgen, F., and Stewart, C. 1995. Creation and characterization of E-selectin-and VCAM-1-deficient mice. Ciba Found. Symp. 189:17–28.PubMedGoogle Scholar
  71. Kyriakides, T. R., Zhu, Y. H., Smith, L. T., Bain, S. D., Yang, Z., Lin, M. T., Danielson, K. G., lozzo, R. V., LaMarca, M., McKinney, C. E., Ginns, E. I., and Bornstein, P. 1998. Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J. Cell Biol. 140:419–430.PubMedCrossRefGoogle Scholar
  72. Lane, T. F., and Leder, P. 1997. WntlOb transgenes direct hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.PubMedCrossRefGoogle Scholar
  73. Lane, T. F., and Leder, P. (in preparation). Reduced expression of Brcal leads to genomic instability and mammary tumor progression.Google Scholar
  74. Larcher, F., Murillas, R., Bolontrade, M., Conti, C. J., and Jorcano, J. L. 1998. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 17:303–311.PubMedCrossRefGoogle Scholar
  75. Lawler, J., Sunday, M., Thibert, V., Duquette, M., George, E. L., Rayburn, H., and Hynes, R. O. 1998. Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J. Clin. Invest. 101:982–992.PubMedCrossRefGoogle Scholar
  76. Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P., and Hogan, B. L. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13:424–436.PubMedCrossRefGoogle Scholar
  77. Li, D. Y., Sorensen, L. K., Brooke, B. S., Urness, L. D., Davis, E. C., Taylor, D. G., Boak, B. B., and Wendel, D. P. 1999. Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537.PubMedCrossRefGoogle Scholar
  78. Lifsted, T., Le Voyer, T., Williams, M., Muller, W., Klein-Szanto, A., Buetow, K. H., and Hunter, K. W. 1998. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77:640–644.PubMedCrossRefGoogle Scholar
  79. Lindahl, P., Johansson, B. R., Leveen, P., and Betsholtz, C. 1997. Pericyte loss and micro-aneurysm formation in PDGF-B-deficient mice. Science 277:242–245.PubMedCrossRefGoogle Scholar
  80. Lyden, D., Young, A. Z., Zagzag, D., Yan, W, Gerald, W., O’Reilly, R., Bader, B. L., Hynes, R. O., Zhuang, Y., Manova, K., and Benezra, R. 1999. Idl and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677.PubMedCrossRefGoogle Scholar
  81. MacLaren, D. C., Gambhir, S. S., Satyamurthy, N., Barrio, J. R., Sharfstein, S., Toyokuni, T., Wu, L., Berk, A. J., Cherry, S. R., Phelps, M. E., and Herschman, H. R. 1999. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6:785–791.PubMedCrossRefGoogle Scholar
  82. Macleod, K. F., and Jacks, T. 1999. Insights into cancer from transgenic mouse models. J. Pathol. 187:43–60.PubMedCrossRefGoogle Scholar
  83. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D. 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.PubMedCrossRefGoogle Scholar
  84. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A., and Simon, M. C. 1997. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407.PubMedCrossRefGoogle Scholar
  85. Manenti, G., Gariboldi, M., Fiorino, A., Zanesi, N., Pierotti, M. A., and Dragani, T. A. 1997. Genetic mapping of lung cancer modifier loci specifically affecting tumor initiation and progression. Cancer Res. 57:4164–4166.PubMedGoogle Scholar
  86. Martin, D. C., Sanchez-Sweatman, O. H., Ho, A. T., Inderdeo, D. S., Tsao, M. S., and Khokha, R. 1999. Transgenic TIMP-1 inhibits simian virus 40 T antigen-induced hepatocarcinogenesis by impairment of hepatocellular proliferation and tumor angiogenesis. Lab. Invest. 79:225–234.PubMedGoogle Scholar
  87. Martin, J. S., Dickson, M. C., Cousins, F. M., Kulkarni, A. B., Karlsson, S., and Akhurst, R. J. 1995. Analysis of homozygous TGF beta 1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis. Ann. N. Y. Acad. Sci. 752:300–308.PubMedCrossRefGoogle Scholar
  88. Miller, D. L., Ortega, S., Bashayan, O., Basch, R., and Basilico, C. 2000. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell Biol. 20:2260–2268.PubMedCrossRefGoogle Scholar
  89. Mukhopadhyay, D., Tsiokas, L., and Sukhatme, V. P. 1995. Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res. 55:6161–6165.PubMedGoogle Scholar
  90. Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R., and Leder, P. 1988. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.PubMedCrossRefGoogle Scholar
  91. Norgaard, P., Law, B., Joseph, H., Page, D. L., Shyr, Y., Mays, D., Pietenpol, J. A., Kohl, N. E., Oliff, A., Coffey, R. J. J., Poulsen, H. S., and Moses, H. L. 1999. Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin. Cancer Res. 5:35–42.PubMedGoogle Scholar
  92. Oike, Y., Takakura, N., Hata, A., Kaname, T., Akizuki, M., Yamaguchi, Y., Yasue, H., Araki, K., Yamamura, K., and Suda, T. 1999. Mice homozygous for a truncated form of CREBbinding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93:2771–2779.PubMedGoogle Scholar
  93. Ortega, M. A., and Iruela-Arispe, M. L. (submitted). Genetic modulation of thrombospondin-1 expression correlates with tumor susceptibility.Google Scholar
  94. Parangi, S., Dietrich, W., Christofori, G., Lander, E. S., and Hanahan, D. 1995. Tumor suppressor loci on mouse chromosomes 9 and 16 are lost at distinct stages of tumorigenesis in a transgenic model of islet cell carcinoma. Cancer Res. 55:6071–6076.PubMedGoogle Scholar
  95. Parangi, S., O’Reilly, M., Christofori, G., Holmgren, L., Grosfeld, J., Folkman, J., and Hanahan, D. 1996. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. USA 93:2002–2007.PubMedCrossRefGoogle Scholar
  96. Pierce, D. F. J., Gorska, A. E., Chytil, A., Meise, K. S., Page, D. L., Coffey, R. J. J., and Moses, H. L. 1995. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc. Natl. Acad. Sci. USA 9:4254–4258.CrossRefGoogle Scholar
  97. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R. S. 1995. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55:4575–4580.PubMedGoogle Scholar
  98. Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., Dillehay, L. E., Madan, A., Semenza, G. L., and Bedi, A. 2000. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 alpha. Genes Dev. 14: 34–44.PubMedGoogle Scholar
  99. Rohan, R. M., Fernandez, A., Udagawa, T., Yuan, J., and D’Amato, R. J. 2000. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14:871–876.PubMedGoogle Scholar
  100. Rosen, E. D., Chan, J. C., Idusogie, E., Clotman, F., Vlasuk, G., Luther, T., Jalbert, L. R., Albrecht, S., Zhong, L., Lissens, A., Schoonjans, L., Moons, L., Collen, D., Castellino, F. J., and Carmeliet, P. 1997. Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390:290–294.PubMedCrossRefGoogle Scholar
  101. Saga, Y., Miyagawa-Tomita, S., Takagi, A., Kitajima, S., Miyazaki, J., and Inoue, T. 1999. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447.PubMedGoogle Scholar
  102. Sapin, V., Dolle, P., Hindelang, C., Kastner, P., and Chambon, P. 1997. Defects of the chorioallantoic placenta in mouse RXRalpha null fetuses. Dev. Biol. 191:29–41.PubMedCrossRefGoogle Scholar
  103. Sato, T., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., Gridley, T., Wolburg, H., Risau, W., and Qin, Y. 1995. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74.PubMedCrossRefGoogle Scholar
  104. Sauer, B. 1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:381–392.PubMedCrossRefGoogle Scholar
  105. Sawicki, J. A., Monks, B., and Morris, R. J. 1998. Cell-specific ecdysone-inducible expression of FLP recombinase in mammalian cells. Biotechniques 25:868–870, 872–875.Google Scholar
  106. Schlaeger, T. M., Bartunkova, S., Lawitts, J. A., Teichmann, G., Risau, W., Deutsch, U., and Sato, T. N. 1997. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc. Natl. Acad. Sci. USA 94:3058–3063.PubMedCrossRefGoogle Scholar
  107. Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., and Schuh, A. C. 1995. Failure of blood-island formation and vasculogenesis in Flk-1deficient mice. Nature 376:62–66.PubMedCrossRefGoogle Scholar
  108. Shi, Y. P., and Ferrara, N. 1999. Oncogenic ras fails to restore an in vivo tumorigenic phenotype in embryonic stem cells lacking vascular endothelial growth factor (VEGF). Biochem. Biophys. Res. Commun. 254:480–483.PubMedCrossRefGoogle Scholar
  109. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.PubMedCrossRefGoogle Scholar
  110. Sternlicht, M. D., Bissell, M. J., and Werb, Z. 2000. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19:1102–1113.PubMedCrossRefGoogle Scholar
  111. Streit, M., Velasco, P., Brown, L. F., Skobe, M., Richard, L., Riccardi, L., Lawler, J., and Detmar, M. 1999. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am. J. Pathol. 155:441–452.PubMedCrossRefGoogle Scholar
  112. Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P., Davis, S., Sato, T., and Yancopoulos, G. 1996. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.PubMedCrossRefGoogle Scholar
  113. Suri, C., McClain, J., Thurston, G., McDonald, D. M., Zhou, H., Oldmixon, E. H., and Sato, T. N. 1998. Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471.PubMedCrossRefGoogle Scholar
  114. Sweeney, T. J., Mailander, V., Tucker, A. A., Olomu, A. B., Zhang, W., Cao, Y., Negrin, R. S., and Contag, C. H. 1999. Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl. Acad. Sci. USA 96:12044–12049.PubMedCrossRefGoogle Scholar
  115. Sympson, C. J., Bissell, M. J., and Werb, Z. 1995. Mammary gland tumor formation in trans-genic mice overexpressing stromelysin-1. Semin. Cancer Biol. 6:159–163.PubMedCrossRefGoogle Scholar
  116. Takahashi, Y., Bucana, C. D., Liu, W., Yoneda, J., Kitadai, Y., Cleary, K. R., and Ellis, L. M. 1996. Platelet-derived endothelial cell growth factor in human colon cancer angiogenesis: role of infiltrating cells. J. Natl. Cancer Inst. 88:1146–1151.PubMedCrossRefGoogle Scholar
  117. Taketo, M., Schroeder, A., Mobraaten, L., Gunning, K., Hanten, G., Fox, R., Roderick, T., Stewart, C., Lilly, F., Hansen, C. T., and Overbeek, P. A. 1991. FVB/N: an inbred mouse strain preferable for transgenic analyses. Proc. Natl. Acad. Sci. USA 88:2065–2069.PubMedCrossRefGoogle Scholar
  118. Tallquist, M. D., Soriano, P., and Klinghoffer, R. A. 1999. Growth factor signaling pathways in vascular development. Oncogene 18:7917–7932.PubMedCrossRefGoogle Scholar
  119. Talts, J. F., Wirl, G., Dictor, M., Muller, W. J., and Fässler, R. 1999. Tenascin-C modulates tumor stroma and monocyte/macrophage recruitment but not tumor growth or metastasis in a mouse strain with spontaneous mammary cancer. J. Cell Sci. 112:1855–1864.PubMedGoogle Scholar
  120. Terry, R. W., Kwee, L., Baldwin, H. S., and Labow, M. A. 1997. Cre-mediated generation of a VCAM-1 null allele in transgenic mice. Transgenic Res. 6:349–356.PubMedCrossRefGoogle Scholar
  121. Theurillat, J. P., Hainfellner, J., Maddalena, A., Weissenberger, J., and Aguzzi, A. 1999. Early induction of angiogenetic signals in gliomas of GFAP-v-src transgenic mice. Am. J. Pathol. 154:581–590.PubMedCrossRefGoogle Scholar
  122. Thomasset, N., Lochter, A., Sympson, C. J., Lund, L. R., Williams, D. R., Behrendtsen, O., Werb, Z., and Bissell, M. J. 1998. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am. J. Pathol. 153:457–467.PubMedCrossRefGoogle Scholar
  123. Thompson, W. D., Li, W. W., and Maragoudakis, M. 1999. The clinical manipulation of angiogenesis: pathology, side-effects, surprises, and opportunities with novel human therapies. J. Pathol 187:503–510.PubMedCrossRefGoogle Scholar
  124. Tyner, S. D., Choi, J., Laucirica, R., Ford, R. J., and Donehower, L. A. 1999. Increased tumor cell proliferation in murine tumors with decreasing dosage of wild-type p53. Mol. Carcinog. 24:197–208.PubMedCrossRefGoogle Scholar
  125. Visvader, J. E., Fujiwara, Y., and Orkin, S. H. 1998. Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. Genes Dev. 12:473–479.PubMedCrossRefGoogle Scholar
  126. Vooijs, M., van der Valk, M., to Riele, H., and Berns, A. 1998. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 17:1–12.PubMedCrossRefGoogle Scholar
  127. Wang, H. U., Chen, Z. F., and Anderson, D. J. 1998a. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753.CrossRefGoogle Scholar
  128. Wang, X. J., Greenhalgh, D. A., Jiang, A., He, D., Zhong, L., Brinkley, B. R., and Roop, D. R. 1998b. Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: evidence for a gain of function. Mol. Carcinog. 23:185–192.CrossRefGoogle Scholar
  129. White, F. C., Benehacene, A., Scheele, J. S., and Kamps, M. 1997. VEGF mRNA is stabilized by ras and tyrosine kinase oncogenes, as well as by UV radiation-evidence for divergent stabilization pathways. Growth Factors 14:199–212.PubMedCrossRefGoogle Scholar
  130. Wigle, J. T., and Oliver, G. 1999. Proxl function is required for the development of the murine lymphatic system. Cell 98:769–778.PubMedCrossRefGoogle Scholar
  131. Witty, J. P., Wright, J. H., and Matrisian, L. M. 1995. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development Mol. Biol. Cell 6:1287–1303.PubMedGoogle Scholar
  132. Wu, H., Lee, S. H., Gao, J., Liu, X., and Iruela-Arispe, M. L. 1999. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605.PubMedGoogle Scholar
  133. Yamada, Y., Pannell, R., Forster, A., and Rabbitts, T. H. 2000. The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 97:320–324.PubMedCrossRefGoogle Scholar
  134. Yamagishi, H., Olson, E. N., and Srivastava, D. 2000. The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J. Clin. Invest. 105:261–270.Google Scholar
  135. Yang, J. T., Rayburn, H., and Hynes, R. O. 1995. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560.Google Scholar
  136. Yang, X. 1999. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126:1571–1580.PubMedGoogle Scholar
  137. Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., and Jain, R. K. 1996. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 93:14765–14770.PubMedCrossRefGoogle Scholar
  138. Yuspa, S. H., Dlugosz, A. A., Cheng, C. K., Denning, M. F., Tennenbaum, T., Glick, A. B., and Weinberg, W. C. 1994. Role of oncogenes and tumor suppressor genes in multistage carcinogenesis. J. Invest. Dermatol. 103:90S–95S.PubMedCrossRefGoogle Scholar
  139. Zeng, X., Wert, S. E., Federici, R., Peters, K. G., and Whitsett, J. A. 1998. VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev. Dyn. 21:215–227.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Timothy F. Lane
  • Alicia Collado-Hidalgo

There are no affiliations available

Personalised recommendations