Skip to main content

Growth Factor Regulation of Physiologic Angiogenesis in the Mammary Gland

  • Chapter
Vascular Morphogenesis in the Female Reproductive System

Abstract

During embryogenesis, the formation of new blood vessels occurs via two processes: vasculogenesis and angiogenesis. Vasculogenesis involves the de novo differentation of endothelial cells from mesoderm-derived precursors called angioblasts, which then cluster and reorganize to form capillary-like tubes (Risau and Flamme, 1995). Once the primary vascular plexus is formed, new capillaries form by sprouting or by splitting (intussusception) from preexisting capillaries in the processes called sprouting or nonsprouting angiogenesis, respectively (Risau, 1997). In postnatal life, the growth of normal as well as neoplastic tissues depends on angiogenesis. Angiogenesis is particularly important for normal reproductive function, including the cyclical growth of capillaries within the ovary (required for ovulation and corpus luteum formation) and the endometrium (required for regeneration following menstruation). Angiogenesis also occurs following implantation of the blastocyst, and is required for the formation of the placenta (Findlay, 1986). This chapter discusses the role of physiologic angiogenesis and angiogenic growth factors in relation to mammary gland function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achen, M. G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A. F., Alitalo, K., and Stacker, S. A. 1998. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flkl) and VEGF receptor 3 (F1k4). Proc. Natl. Acad. Sci. USA. 95:548–553.

    Article  PubMed  CAS  Google Scholar 

  • Alon, T., Hemo, I., Itin, A., Pe’er, J., Stone, J., and Keshet, E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  • Aprelikova, O., Pajusola, K., Partanen, J., Armstrong, E., Alitalo, R., Bailey, S. K., McMahon, J., Wasmuth, J., Huebner, K., and Alitalo, K. 1992. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer Res. 52:746–748.

    PubMed  CAS  Google Scholar 

  • Bellomo, D., Headrick, J. P., Silins, G. U., Paterson, C. A., Thomas, P. S., Gartside, M., Mould, A., Cahill, M. M., Tonks, I. D., Grimmond, S. M., Townson, S., Wells, C., Little, M., Cummings, M. C., Hayward, N. K., and Kay, G. F. 2000. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86:E29–E35.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, L. E., and Keshet, E. 1997. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc. Natl. Acad. Sci. USA 94:8761–8766.

    Article  PubMed  CAS  Google Scholar 

  • Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., Senger, D. R., Connolly, J. L., and Schnitt, S. J. 1995. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol. 26:86–91.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Ebenhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W., and Nagy, A. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, C. W., and Silberstein, G. B. 1987. Postnatal development of rodent mammary gland. In: Neville, M. C., and Daniel, C. W., eds. The Mammary Gland. Plenum Press, New York, pp. 3–36.

    Google Scholar 

  • De Vries, C., Escobedo, J. A., Ueno, H., Houck, K., Ferrara, N., and Williams, L. T. 1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, D. J., Gradwohl, G., Fong, G.-H., Puri, M. C., Gertsenstein, M., Auerbach, A., and Breitman, M. L. 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dep. 8:1897–1909.

    Article  CAS  Google Scholar 

  • Dumont, D. J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, M., and Alitalo, K. 1998. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, H. F., Brown, L. F., Detmar, M., and Dvorak, A. M. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146: 1029–1039.

    PubMed  CAS  Google Scholar 

  • Feng, D., Nagy, J. A., Pyne, K., Hammel, I., Dvorak, H. F., and Dvorak, A. M. 1999. Pathways of macromolecular extravasation across microvascular endothelium in responce to VPF/VEGF and other vasoactive mediators. Microcirculation 6: 23–44.

    PubMed  CAS  Google Scholar 

  • Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hilan, K. J., and Moore, M. W. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 438–442.

    Article  Google Scholar 

  • Ferrara, N., and Henzel, W. J. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161: 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, J. K. 1986. Angiogenesis in reproductive tissues. J. Endocrinol. 111:357–366. Galland, F., Karamysheva, A., Mattei, M.-G., Rosnet, O., Marchetto, S., and Birnbaum, D. 1992. Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics 13: 475–478.

    Google Scholar 

  • Gasparini, G., Toi, M., Gion, M., Verderio, P., Dittadi, R., Hanatani, M., Matsubara, I., Vinante, O., Bonoldi, E., Boracchi, P., Gatti, C., Suzuki, H., and Tominaga, T. 1997. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J. Natl. Cancer Inst. 89: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Gluzman-Poltorak, Z., Cohen, T., Herzog, Y., and Neufeld, G. 2000. Neuropilin-2 and neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J. Biol. Chem. 275:18040–18045.

    Article  PubMed  CAS  Google Scholar 

  • Greb, R. R., Maier, I., Wallwiener, D., and Kiesel, L. 1999. Vascular endothelial growth factor A (VEGF-A) mRNA expression levels decrease after menopause in normal breast tissue but not in breast cancer lesions. Br. J. Cancer. 81:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Haagensen, D. C. 1986. Diseases of the Breast, 3rd ed. W. B. Saunders, Philadelphia. Hauser, S., and Weich, H. A. 1993. A heparin-binding form of placenta growth factor

    Google Scholar 

  • (P1GF-2) is expressed in human umbilical vein endothelial cells and in placenta. Growth

    Google Scholar 

  • Factors 9:259–268.

    Google Scholar 

  • Hlatky, L., Tsionou, C., Hahnfeldt, P., and Coleman, C. N. 1994. Mammary fibroblasts may influence breast tumor angiogenesis via hypoksia-induced vascular endothelial growth factor up-regulation and protein expression. Cancer Res. 54:6083–6086.

    PubMed  CAS  Google Scholar 

  • Jeltsch, M., Kaipainen, A., Joukov, V., Meng, X., Lakso, M., Rauvala, H., Swartz, M., Fukumura, D., Jain, R. K., and Alitalo, K. 1997. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  • Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N., and Alitalo, K. 1996. A novel vascular endothelial growth factor, VEGFC, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15:290–298.

    PubMed  CAS  Google Scholar 

  • Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N., and Alitalo, K. 1997. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16:3898–3911.

    Article  PubMed  CAS  Google Scholar 

  • Kaipainen, A., Korhonen, J., Mustonen, T., van Hinsbergh, V. M., Fang, G.-H., Dumont, D., Breitman, M., and Alitalo, K. 1995. Expression of the fins-like tyrosine kinase FLT4 38 A. Saaristo et al gene becomes restricted to endothelium of lymphatic vessels during development. Proc. Natl. Acad. Sci. USA 92:3566–3570.

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen M., Valtola, R., Korpelainen E., and Alitalo, K. 1999. VEGF, VEGF-C and their receptors in tumor angigenesis and metastasis. In: Fidler, I. J., Niitsu, Y., Seiki, M., Sugimura, T., and Yokota, J., eds. Extended abstracts of the 29`h International Symposium of The Princess Takamatsu Cancer Research Fund. Molecular basis for invasion and metastasis. (Tokyo: Princess Takamatsu Cancer Research Fund), pp. 94–104.

    Google Scholar 

  • Kendall, R. L., and Thomas, K. A. 1993. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90:10705–10709.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Gray, A., Yuan, J., Louth, S.-M., Avraham, H., and Wood, W. 1996. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc. Natl. Acad. Sci. USA 93:1988–1992.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenbeld, H. C., Barendsz-Janson, A. F., van Essen, H., Struijker, B., Griffioen, A. W., and Hillen, H. F. 1998. Angiogenic potential of malignant and non-malignant human breast tissues in an in vivo angiogenesis model. Int. J. Cancer 77:455–459.

    Article  PubMed  CAS  Google Scholar 

  • Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P., and Persico, M. G. 1991. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl. Acad. Sci. USA 88:9267–9271.

    Article  PubMed  CAS  Google Scholar 

  • Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., Compton, D., McClain, J., Aldrich, T. H., Papadopoulos, N., Daly, T. J., Davis, S., Sato, T. N., and Yancopoulos, G. D. 1997. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Makinen, T., Olofsson, B., Karpanen, T., Hellman, U., Soker, S., Klagsbrun, M., Eriksson, U., and Alitalo, K. 1999. Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J. Biol. Chem. 274:21217–21222.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, K., and Nakamura, T. 1996. Emerging multipotential aspects of hepatocyte growth factor. J. Biochem. 119:591–600.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Kurohmaru, M., Hayashi, Y., Nishinakagawa, H., and Otsuka, J. 1994. Permeability of mammary gland capillaries to ferritin in mice. J. Vet. Med. Sci. 56:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Nishinakagawa, H., Kurohmaru, M., Hayashi, Y., and Otsuka, J. 1992. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J. Vet. Med. Sci. 54:937–943.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H. G., Ziche, M., Lanz, C., Böttner, M., Rziha, H.-J., and Dehio, C. 1999. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18:363–374.

    Article  PubMed  CAS  Google Scholar 

  • Migdal, M., Huppertz, B., Tessler, S., Comforti, A., Shibuya, M., Reich, R., Baumann, H., and Neufeld, G. 1998. Neuropilin-1 is a placenta growth factor-2 receptor./ Biol. Chem. 273:22272–22278.

    Article  CAS  Google Scholar 

  • Nakamura, J., Lu, Q., Aberdeen, G., Albrecht, E., and Brodie, A. 1999. The effect of estrogen on aromatase and vascular endothelial growth factor messenger ribonucleic acid in the normal nonhuman primate mammary gland. J. Clin. Endocrinol. Metab. 84:1432–1437.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld, G., Cohen, T., Gengrinovitch S., and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22.

    PubMed  CAS  Google Scholar 

  • Obermair, A., Kucera, E., Mayerhofer, K., Speicer, P., Seifert, M., Czerwenka, K., Kaider, A., Leodolter, S., Kainz, C., and Zellinger, R. 1997. Vascular endothelial growth factor (VEGF) in human breast cancer: correlation with disease-free survival. Int. J. Cancer. 74:455–458.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, S., Oku, A., Sawano, A., Yamaguchi, S., Yazaki, Y., and Shibuya, M. 1998. A novel type of vascular endothelial growth factor: VEGF-E (NZ-7 VEGF) preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 273:31273–31282.

    Article  PubMed  CAS  Google Scholar 

  • Olofsson, B., Korpelainen, E., Pepper, M. S., Mandriota, S. J., Aase, K., Kumar, V., Gunji, Y., Jeltsch, M. M., Shibuya, M., Alitalo, K., and Eriksson, U. 1998. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA 95:11709–11714.

    Article  PubMed  CAS  Google Scholar 

  • Olofsson, B., Pajusola, K., Kaipainen, A., Von Euler, G., Joukov, V., Saksela, O., Orpana, A., Pettersson, R. F., Alitalo, K., and Eriksson, U. 1996a. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. USA 93:2576–2581.

    Article  CAS  Google Scholar 

  • Olofsson, B., Pajusola, K., von Euler, G., Chilov, D., Alitalo, K., and Eriksson, U. 1996b. Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform. J. Biol. Chem. 271:19310–19317.

    Article  CAS  Google Scholar 

  • Orlandini, M., Marconcini, L., Ferruzzi, R., and Oliviero, S. 1996. Identification of a c-fosinduced gene that is related to the platelet-derived growth factor/vascular endothelial growth factor family. Proc. Natl. Acad. Sci. USA 93:11675–11680.

    Article  PubMed  CAS  Google Scholar 

  • Pajusola, K., Aprelikova, O., Armstrong, E., Morris, S., and Alitalo, K. 1993. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxyterminal tails are produced by alternative processing of primary transcripts. Oncogene 8:2931–2937.

    PubMed  CAS  Google Scholar 

  • Partanen, J., Armstrong, E., Mäkelä, T. P., Korhonen, J., Sandberg, M., Renkonen, R., Knuutila, S., Huebner, K., and Alitalo, K. 1992. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol. Cell. Biol. 12:1698–1707.

    PubMed  CAS  Google Scholar 

  • Partanen, T., Arola, J., Saaristo, A., Jussila, L., Ora, A., Miettinen, M., and Alitalo, K. 2000. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR3 in fenestrated blood vessels in human tissues. FASEB J. 14:2087–2096.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, M. S., Baetens, D., Mandriota, S., Di Sanza, C., Oikesmus, S., Lane, T. F., Soriano, J. V., Montesano, R., and Iruela-Arispe, L. 2000. Regulation of VEGF and VEGF receptor expression in the mammary gland during pregnancy, lactation and involution. Dey. Dyn. 218:507–524.

    Article  CAS  Google Scholar 

  • Pepper, M. S., Soriano, J. V. Menould, P.-A., Sappino A.-P., Orci, L., Montesano, R. 1995. Modulation of hepatocyte growth factor and c-met expression in the rat mammary gland during pregnancy, lactation and involution. Exp. Cell Res. 219:204–210.

    Article  PubMed  CAS  Google Scholar 

  • Plouet, J., Schilling, J., and Gospodarowicz, D. 1989. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J. 8:3801–3806.

    PubMed  CAS  Google Scholar 

  • Puri, M. C., Rossant, J., Alitalo, K., Bernstein, A., and Partanen, J. 1995. The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J. 14:5884–5891.

    PubMed  CAS  Google Scholar 

  • Risau, W. 1997. Mechanisms of angiogenesis. Nature 386:671–674.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., and Flamme, I. 1995. Vasculogenesis. Annu. Rev. Cell Dep. Biol. 11:73–91.

    Article  CAS  Google Scholar 

  • Saaristo, A., Partanen, T. A., Jussila, L., Arola, J., Hytonen, M., Makitie, A., Vento, S., Kaipainen, A., Malmberg, H., and Alitalo, K. 2000. Vascular endothelial growth factor-C and its receptor VEGFR-3 in nasal mucosa and in nasopharyngeal tumors. Am. J. Pathol. 157:7–14.

    Article  PubMed  CAS  Google Scholar 

  • Seetharam, L., Gotoh, N., Maru, Y., Neufeld, G., Yamaguchi, S., and Shibuya, M. 1995. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10:135–147.

    PubMed  CAS  Google Scholar 

  • Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H., and Sato, M. 1990. Nucleotide sequence and expression of a novel human receptor type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519–524.

    PubMed  CAS  Google Scholar 

  • Siafakas, C. G., Anatolitou, F., Fusunyan, R. D., Walker, W. A., and Sanderson, I. R. 1999. Vascular endothelial growth factor (VEGF) is present in human breast milk and its receptor is present on intestinal epithelial cells. Pediatr. Res. 45:652–657.

    Article  PubMed  CAS  Google Scholar 

  • Soemarwoto, I. N., and Bern, H. A. 1958. The effects of hormones on the vascular pattern of the mouse mammary gland. Am. J. Anat. 103:403–435.

    Article  PubMed  CAS  Google Scholar 

  • Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., and Klagsbrun, M. 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, J. V., Pepper, M. S., Nakamura, T., Orci, L., and Montesano, R. 1995. Hepatocyte growth factor stimulates extensive development of branching dut-like structures by cloned mammary gland epithelial cells. J. Cell. Sci. 108:413–430.

    PubMed  CAS  Google Scholar 

  • Stirling, J. W., and Chandler, J. A. 1976. The fine structure of the normal, resting terminal ductal-lobular unit of the female breast. Virchows. Arch. [A] 372:205–226.

    Article  CAS  Google Scholar 

  • Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., Sato, T. N., and Yancopoulos, G. D. 1997. Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1161–1169.

    Google Scholar 

  • Takahashi, A., Sasaki, H., Kim, S. J., Tobisu, K., Kakizoe, T., Tsukamoto, T., Kumamoto, Y., Sugimura, T., and Terada, M. 1994. Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res. 54:4233–4237.

    PubMed  CAS  Google Scholar 

  • Terman, B. I., Dougher-Vermazen, M., Carrion, M. E., Dimitrov, D., Armellino, D. C., Gospodarowicz, D., and Böhlen, P. 1992. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, G., Suri, C., Smith, K., McClain, J., Sato, T. N., Yancopoulos, G. D., and McDonald, D. M. 1999. Leakage-resistant blood vessels in mice transgenically over-expressing angiopoietin-1. Science 286:2511–2514.

    Article  PubMed  CAS  Google Scholar 

  • Turner, C. W., and Gomez, E. T. 1933. The normal development of the mammary gland in the male and female albino mouse. Res. Bull. Mo. Agric. Exper. Sta. 182:3–43.

    Google Scholar 

  • Valtola, R., Salven, P., Heikkilä, P., Taipale, J., Joensuu, H., Rehn, M., Pihlajaniemi, T., Weich, H., de Waal, R., and Alitalo, K. 1999. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am. J. Pathol. 154:1381–1390.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, H. M. 1915. Development of the blood vessels of the mammary gland in the rabbit. Am. J. Anat. 18:515–524.

    Article  Google Scholar 

  • Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C.-H. 1994. Different signal transduction properties of KDR and Fltl, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269:26988–26995.

    PubMed  CAS  Google Scholar 

  • Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. 1991. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N. Engl. J. Med. 324:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Wise, L. M., Veikkola, T., Mercer, A. A., Savory, L. J., Fleming, S. B., Caesar, C., Vitali, A., Makinen, T., Alitalo, K., and Stacker, S. A. 1999. Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc. Natl. Acad. Sci. USA 96:3071–3076.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, Y., Nezu, J., Shimane, M., and Hirata, Y. 1997. Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 42:483–488.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Spitzer, E., Meyer, D., Sachs, M., Niemann, C., Hartmann, G., Weidner, K. M., Birchmeier, C., and Birchmeier, W. 1995. Sequential requirement of hepatocyte growth factor and neuregulin in morphogenesis and differentiation of the mammary gland. J. Cell. Biol. 131:215–226.

    Article  PubMed  CAS  Google Scholar 

  • Yasugi, T., Kaido, T., and Uehara, Y. 1989. Changes in density and architecture of micro-vessels of the rat mammary gland during pregnancy and lactation. Arch. Histol. Cytol. 52:115–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saaristo, A., Karkkainen, M.J., Alitalo, K., Montesano, R., Iruela-Arispe, M.L., Pepper, M.S. (2001). Growth Factor Regulation of Physiologic Angiogenesis in the Mammary Gland. In: Augustin, H.G., Rogers, P.A.W., Iruela-Arispe, M.L., Smith, S.K. (eds) Vascular Morphogenesis in the Female Reproductive System. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0213-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0213-4_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6665-5

  • Online ISBN: 978-1-4612-0213-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics