Advertisement

Placental Functional Morphology

  • Graham J. Burton
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)

Abstract

The placenta performs a remarkable variety of functions, acting as the fetal lung, liver, and kidneys in addition to serving as a physical and immunologic barrier separating the maternal and fetal circulations. Each of these different functions places its own special demands on the structure of the organ, some of which are potentially in conflict. However, it is a reasonable assumption that the requirements for diffusional exchange play the most significant role in determining placental morphology. The rate of diffusion of a gas across a membrane is governed by the Fick equation, and so the structural determinants are the surface area available for exchange and the thickness of the membrane. As gestation advances there is a continual elaboration of the principal functional units of the placenta, the terminal villi, and a progressive reduction in the mean thickness of the villous membrane separating the two circulations. Both these changes facilitate gaseous exchange, and are dependent on continued angiogenesis within the villi.

Keywords

Human Placenta Fetal Circulation Term Placenta Villous Tree Intervillous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, K. Z. M., Burton, G. J., Morad, N., and Ali, M. E. 1996. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude? Placenta 17:677–682.PubMedCrossRefGoogle Scholar
  2. Boura, A. L. A., and Walter, W. A. W. 1991. Autocoids and the control of vascular tone in the human umbilical-placental circulation. Placenta 12:453–477.PubMedCrossRefGoogle Scholar
  3. Bouw, G. M., Stolte, L. A. M., Baak, J. P. A., and Oort, J. 1976. Quantitative morphology of the placenta. I. Standardization of sampling. Eur. J. Obstet. Gynecol. Reprod. Biol. 6:325–331.CrossRefGoogle Scholar
  4. Boyd, J. D., and Hamilton, W. J. 1970. The Human Placenta. Heffer and Sons, Cambridge. Burton, G. J. 1987. The time structure of the human placental villus as revealed by scanning electron microscopy. Scanning Micross. 1:1811–1828.Google Scholar
  5. Burton, G. J. 1997. On “Oxygen and placental villous development: origins of fetal hypoxia.” Placenta 18:625–626.CrossRefGoogle Scholar
  6. Burton, G. J., and Feneley, M. R. 1992. Capillary volume fraction is the principal determinant of villous membrane thickness in the human placenta at term. J. Dev. Physiol. 17:39–45.PubMedGoogle Scholar
  7. Burton, G. J., Ingram, S. C., and Palmer, M. E. 1987. The influence of the mode of fixation on morphometrical data derived from terminal villi in the human placenta at term: a comparison of immersion and perfusion fixation. Placenta 8:37–51.PubMedCrossRefGoogle Scholar
  8. Burton, G. J., and Jauniaux, E. 1995. Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. Br. J. Obstet. Gynaecol. 102:818–825.PubMedCrossRefGoogle Scholar
  9. Burton, G. J., Jauniaux, E., and Watson, A. L. 1999a. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd Collection revisited. Am. J. Obstet. Gynecol. 181:718–724.PubMedCrossRefGoogle Scholar
  10. Burton, G. J., Jauniaux, E., and Watson, A. L. 19996. Influence of oxygen supply on placental structure. In: O’Brien, P. M. S., Wheeler, T., and Barker, D. J. P., eds. Fetal Programming: Influences on Development and Disease in Later Life. RCOG Press, London, pp. 326–341.Google Scholar
  11. Burton, G. J., Mayhew, T. M., and Robertson, L. A. 1989. Stereological re-examination of the effects of varying oxygen tensions on human placental villi maintained in organ culture for up to 12 h. Placenta 10:263–273.PubMedCrossRefGoogle Scholar
  12. Burton, G. J., Reshetnikova, O. S., Milovanov, A. P., and Teleshova, O. V. 1996. Stereological evaluation of vascular adaptations of human placental villi to differing forms of hypoxic stress. Placenta 17:49–55.PubMedCrossRefGoogle Scholar
  13. Burton, G. J., and Tham, S. W. 1992. The formation of vasculo-syncytial membranes in the human placenta. J. Dev. Physiol. 18:43–47.PubMedGoogle Scholar
  14. Castellucci, M., Celona, A., Bartels, H., Steininger, B., Benedetto, V., and Kaufmann, P. 1987. Mitosis of the Hofbauer cell: possible implications for a fetal macrophage. Placenta 8:65–76.PubMedCrossRefGoogle Scholar
  15. Critchley, G. R., and Burton, G. J. 1987. Intralobular variations in barrier thichkness in the mature human placenta. Placenta 8:185–194.PubMedCrossRefGoogle Scholar
  16. Degani, S., Paltieli, Y., Lewinsky, R., Abramovici, D., and Sharf, M. 1991. Fetal and utero-Google Scholar
  17. placental flow velocity waveforms and placental grading. Am. J. Perinatol. 8:47–49Google Scholar
  18. Demir, R., Kaufmann, P., Castellucci, M., Erbengi, T., and Kotowski, A. 1989. Fetal vascu-logenesis and angiogenesis in human placental villi. Acta Anat. 136:190–203.PubMedCrossRefGoogle Scholar
  19. Dempsey, E. W. 1972. The development of capillaries in the villi of early human placentas.Google Scholar
  20. Am. J. Anat. 134:221–238.Google Scholar
  21. Fox, H. 1967. The incidence and significance of vasculo-syncytial membranes in the human placenta. J. Obstet. Gynaecol. Br. Commonw. 47:28–33.CrossRefGoogle Scholar
  22. Guiot, C., Pianta, P. G., and Todros, T. 1992. Modelling the feto-placental circulation: 1. A distributed network predicting umbilical haemodynamics throughout pregnancy. Ultrasound Med. Biol. 18:535–544.PubMedCrossRefGoogle Scholar
  23. Heinrich, D., Metz, J., Raviola, E., and Forssmann, W. G. 1976. Ultrastructure of perfusion-fixed fetal capillaries in the human placenta. Cell Tissue Res. 172:157–169.PubMedCrossRefGoogle Scholar
  24. Hitschold, T., Weiss, E., Beck, T., Huntefering, H., and Berle, P. 1993. Low target birth weight or growth retardation? Umbilical Doppler flow velocity waveforms and histometric analysis of fetoplacental vascular tree. Am. J. Obstet. Gynecol. 168:12601264.Google Scholar
  25. Hustin, J., and Schaaps, J. P. 1987. Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am. J. Obstet. Gynecol. 157:162–168.PubMedGoogle Scholar
  26. Hustin, J., Schaaps, J. P., and Lambotte, R. 1988. Anatomical studies of the utero-placental vascularisation in the first trimester of pregnancy. Trophoblast Res. 3:49–60.Google Scholar
  27. Jackson, M. R., Mayhew, T. M., and Boyd, P. A. 1992. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 13:357–370.PubMedCrossRefGoogle Scholar
  28. Jackson, M. R., Mayhew, T. M., and Haas, J. D. 1987. Morphometric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of newborn. Placenta 8:487–495.PubMedCrossRefGoogle Scholar
  29. Jackson, M. R., Mayhew, T. M., and Haas, J. D. 1988. On the factors which contribute to thinning of the villous membrane at high altitude. II. An increase in the degree of peripheralization of fetal capillaries. Placenta 9:9–18.PubMedCrossRefGoogle Scholar
  30. Jackson, M. R., Walsh, A. J., Morrow, R. J., Mullen, J. B. M., Lye, S. J., and Ritchie, J. W. K. 1995. Reduced placental villous tree elaboration in small-for-gestational-age preg-nancies: relationship with umbilical artery Doppler waveforms. Am. J. Obstet. Gynecol. 172:518–525.CrossRefGoogle Scholar
  31. Jaffe, R., Jauniaux, E., and Hustin, J. 1997. Maternal circulation in the first-trimester human placenta-myth or reality? Am. J. Obstet. Gynecol. 176:695–705.PubMedCrossRefGoogle Scholar
  32. Jauniaux, E., and Burton, G. J. 1993. Correlation of umbilical Doppler features and placental morphometry: the need for uniform methodology. Ultrasound Obstet. Gynecol. 3:233–235.PubMedCrossRefGoogle Scholar
  33. Jauniaux, E., Burton, G. J., Moscosco, G. J., and Hustin, J. 1991. Development of the early placenta: a morphometric study. Placenta 12:269–276.PubMedCrossRefGoogle Scholar
  34. Jauniaux, E., Jurkovic, D., Campbell, S., and Hustin, J. 1992. Doppler ultrasound features of the developing placental circulations: correlation with anatomic findings. Am. J. Obstet. Gynecol. 166:585–587.PubMedGoogle Scholar
  35. Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y.-P., Skepper, J. N., and Burton, G. J. 2000. Onset of maternal arterial bloodflow and placental oxidative stress; a possible factor in human early pregnancy failure. Am. J. Path. 157:2111–2122.PubMedCrossRefGoogle Scholar
  36. Jones, C. J. P., and Fox, H. 1991. Ultrastructure of the normal human placenta. Electron Microsc. Rev. 4:129–178.PubMedCrossRefGoogle Scholar
  37. Kadyrov, M., Kosanke, G., Kingdom, J., and Kaufmann, P. 1998. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 352:1747–1749.PubMedCrossRefGoogle Scholar
  38. Karimu, A. L., and Burton, G. J. 1994a. Compliance of the human placental villous membrane at term: the concept of the feto-placental unit as an autoregulating gas exchange system. Trophoblast Res. 8:541–558.Google Scholar
  39. Karimu, A. L., and Burton, G. J. 1994b. The effects of maternal vascular pressure on theGoogle Scholar
  40. dimensions of the placental capillaries. Br. J. Obstet. Gynecol. 101:57–63.Google Scholar
  41. Karimu, A. L., and Burton, G. J. 1995. Human term placental capillary endothelial cellGoogle Scholar
  42. specialization: a morphometric study. Placenta 16:93–99.Google Scholar
  43. Kaufmann, P., Bruns, U., Leiser, R., Luckhardt, M., and Winterhager, E. 1985. The fetal vascularisation of term placental villi. II. Intermediate and terminal villi. Anat. Embryol. 173:203–214.PubMedCrossRefGoogle Scholar
  44. Kaufmann, P., and Burton, G. J. 1994. Anatomy and genesis of the placenta. In: Knobil, E., and Neill, J. D., eds. The Physiology of Reproduction. Raven Press, New York, pp. 441–484.Google Scholar
  45. Kaufmann, P., Luckhardt, M., and Leiser, R. 1988. Three-dimensional representation of the fetal vessel system in the human placenta. Trophoblast Res. 3:113–137.Google Scholar
  46. Kaufmann, P., Stark, J., and Stegner, H. E. 1977. The villous stroma of the human placenta.1. The ultrastructure of fixed connective tissue cells. Cell Tissue Res. 177:105–121.PubMedCrossRefGoogle Scholar
  47. Kingdom, J. C. P., and Kaufmann, P. 1997. Oxygen and placental villous development:Google Scholar
  48. origins of fetal hypoxia. Placenta 18:613–621.Google Scholar
  49. Krebs, C., Longo, L. D., and Leiser, R. 1997. Term ovine placental vasculature: comparison of sea level and high altitude conditions by corrosion cast and histomorphometry. Placenta 18:43–51.PubMedCrossRefGoogle Scholar
  50. Krebs, C., Macara, L. M., Leiser, R., Bowman, A. W., Greer, I. A., and Kingdom, J. C. P. 1996. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol. 175:1534–1542.PubMedCrossRefGoogle Scholar
  51. Laga, E. M., Driscoll, S. G., and Munro, H. N. 1973. Quantitative studies of human placenta. I. Morphometry. Biol. Neonate 23:231–259.CrossRefGoogle Scholar
  52. Luckett, W. P. 1978. Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am. J. Anat. 152:59–97.PubMedCrossRefGoogle Scholar
  53. Mayhew, T. M., and Burton, G. J. 1988. Methodological problems in placental morphometry: apologia for the use of stereology based on sound sampling practice. Placenta 9:565–581.PubMedCrossRefGoogle Scholar
  54. Mayhew, T. M., Jackson, M. R., and Haas, J. D. 1986. Microscopical morphology of the human placenta and its effects on oxygen diffusion: a morphometric study. Placenta 7:121–131.PubMedCrossRefGoogle Scholar
  55. Nikolov, S. D., and Schiebler, T. H. 1981. Über Endothelzellen in Zottengefäßen der reifen menschlichen placenta. Acta Anat. 110:338–344.PubMedCrossRefGoogle Scholar
  56. Pisarski, T., and Topilko, A. 1966. Comparative study of the vascular syncytial membranes of the human placenta in light and electron microscopy. Pol. Med. J. 5:630–638.PubMedGoogle Scholar
  57. Reshetnikova, O. S., Burton, G. J., and Milovanov, A. P. 1994. Effects of hypobaric hypoxia on the few-placental unit: the morphometric diffusing capacity of the villous membrane at high altitude. Am. J. Obstet. Gynecol. 171:1560–1565.PubMedGoogle Scholar
  58. Reshetnikova, O. S., Burton, G. J., Milovanov, A. P., and Fokin, E. I. 1996. Increased incidence of placental chorangioma in high altitude pregnancies: hypobaric hypoxia as a possible aetiological factor. Am. J. Obstet. Gynecol. 174:557–561.PubMedCrossRefGoogle Scholar
  59. Resnick, N., and Gimbrone, M. A. 1995. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9:874–882.PubMedGoogle Scholar
  60. Rodesch, F., Simon, P., Donner, C., and Jauniaux, E. 1992. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol. 80:283285.Google Scholar
  61. Sen, D. K., Kaufmann, P., and Schweikhart, G. 1979. Classification of placental villi. II. Morphometry. Cell Tissue Res. 200:425–434.PubMedCrossRefGoogle Scholar
  62. Soma, H., Watanabe, Y., and Hata, T. 1995. Chorangiosis and chorangioma in three cohorts of placentas from Nepal, Tibet and Japan. Rep rod. Fertil. Dev. 7:1533–1538.CrossRefGoogle Scholar
  63. Soothill, P. W., Nicolaides, K. H., Rodeck, C. H., and Campbell, S. 1986. Effect of gestational age on fetal and intervillous blood gas and acid-base values in human pregnancy. Fetal Ther. 1:168–175.PubMedCrossRefGoogle Scholar
  64. Steven, D. H., and Samuel, C. A. 1976. Morphological basis of placental transport. In: Wilkinson, A. W., ed. Early Nutrition and Later Development. Pitman Medical, London, pp. 18–30.Google Scholar
  65. Thompson, R. S., and Trudinger, B. J. 1990. Doppler waveform pulsatility index and resistance, pressure and flow in the umbilical placental circulation; an investigation using a mathematical model. Ultrasound Med. Biol. 16:449–458.PubMedCrossRefGoogle Scholar
  66. Todros, T., Sciarrone, A., Piccoli, E., Guiot, C., Kaufmann, P., and Kingdom, J. 1999. Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstet. Gynecol. 93:499–503.PubMedCrossRefGoogle Scholar
  67. Tominaga, T., and Page, E. W. 1966. Accommodation of the human placenta to hypoxia. Am. J. Obstet. Gynecol. 94:679–691.PubMedGoogle Scholar
  68. Yamada, T., Isemura, M., Yamaguchi, Y., Munakata, H., Hayashi, N., and Kyogoku, M. 1987. Immunochemical localization of fibronectin in the human placentas in their different stages of maturation. Histochemistry 86:579–584.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Graham J. Burton

There are no affiliations available

Personalised recommendations