Angiogenesis, Vascular Imaging, and Therapeutic Approaches in Ovarian Tumors

  • Elise C. Kohn
  • Steven K. Libutti
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Angiogenesis has multiple critical purposes in the normal human ovary as described in the Chapters 7, 8, and 9. While the component processes underlying neovascularization may be similar between physiologic and tumor-associated angiogenesis (Kohn and Liotta, 1995), angiogenesis has a very different purpose in the context of malignant and nonmalignant ovarian neoplasms. Physiologic angiogenesis supplies nutrients necessary for normal cyclical ovarian function, production, and maintenance of the placenta during pregnancy, and development of the fetus. Those same vessels provide an outbound route for hormones and growth factors of ovarian origin and cellular and subcellular waste products. However, in malignancy an additional function is attributed to the vascular tree: provision of the conduit for tumor cell dissemination. This latter function allows completion of the key step that separates nonmalignant tumors from malignant tumors—the potential for invasion and development of tumor satellites. These metastatic deposits are the primary cause of death in advanced ovarian cancers of germ cell, stromal, and epithelial origin. The potential for tumor cell invasion is by itself inadequate for the process of tumor dissemination in the absence of vascular access. Thus, angiogenesis can be considered a rate-limiting process for normal ovarian function as well as in ovarian malignancies.


Vascular Endothelial Growth Factor Ovarian Cancer Epithelial Ovarian Cancer Ovarian Tumor Corpus Luteum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Jawdeh, G. M., Faix, J. D., Niloff, J., Tognazzi, K., Manseau, E., and Dvorak, H. F. 1996. Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab. Invest. 74:1105–1115.Google Scholar
  2. Abulafia, O., and Sherer, D. M. 2000. Angiogenesis of the ovary. Am. J. Obstet. Gynecol. 18:240–246.CrossRefGoogle Scholar
  3. Abulafia, O., Triest, W. E., and Sherer, D. M. 1997. Angiogenesis in primary and metastatic epithelial ovarian carcinoma. Am. J. Obstet. Gynecol. 177:541–547.PubMedCrossRefGoogle Scholar
  4. Anderson, I. C., Shipp, M. A., Docherty, A. J., and Teicher, B. A. 1996. Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56:715–718.Google Scholar
  5. Barton, D. P., Cai, A., Wendt, K., Young, M., Gamero, A., and De Cesare, S. 1997. Angiogenic protein expression in advanced epithelial ovarian cancer. Clin. Cancer Res. 3:1579–1586.Google Scholar
  6. Beck, L. J., and D’Amore, P. A. 1997. Vascular development: cellular and molecular regulation. FASEB J. 11:365–373.PubMedGoogle Scholar
  7. Belotti, D., Vergani, V., Drudis, T., Borsotti, P., Pitelli, M. R., Viale, G., Giavazzi, R., and Taraboletti, G. 1996. The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin. Cancer Res. 2:1843–1849.Google Scholar
  8. Benjamin, L., Golijanin, D., Itin, A., Poide, D., and Keshet, E. 1999. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawl. J. Clin. Invest. 103:159–165.PubMedCrossRefGoogle Scholar
  9. Bikfalvi, A., Klein, S., Pintucci, G., and Rifkin, D. B. 1997. Biological roles of fibroblast growth factor 2. Endocr. Rev. 18:26–45.Google Scholar
  10. Boocock, C. A., Charnock-Jones, S., Sharkey, A. M., McLaren, J., Barker, P. J., and Wright, K. A. 1995. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J. Natl. Cancer Inst. 87:506–516.PubMedCrossRefGoogle Scholar
  11. Brasch, R., Pham, C., Shames, D., Roberts, T., van Dijke, K., van Bruggen, N., Mann, J., Ostrowitzki, S., and Melnyk, O. 1997. Assessing tumor angiogenesis using macromolecular MRI imaging contrast media. J. Magn. Reson. Imaging 7:68–74.PubMedCrossRefGoogle Scholar
  12. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. 1995. Anti-integrin alpha y beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96:1815–1818.PubMedCrossRefGoogle Scholar
  13. Brown, P. D. 1994. Preclinical and clinical studies on the matrix metalloproteinase inhibitor, batimastat (BB94). Clin. Exp. Metastasis 12:23.Google Scholar
  14. Brown, P. D., and Giavazzi, R. 1995. Matrix metalloproteinase inhibition: a review of anti-tumour activity. Ann. Oncol. 6:967–974.PubMedGoogle Scholar
  15. Brudin, L., Rhodes, C., Valind, S., Buckingham, P., Jones, T., and Hughes, J. 1992. Regional structure-function correlations in chronic obstructive lung disease measured with positron emission tomography. Thorax 47:914–921.PubMedCrossRefGoogle Scholar
  16. Buadu, L., Murakami, J., Murayama, S., Hashiguchi, N., Sakai, S., Masuda, K., Toyoshima, S., Kuroki, S., and Ohno, S. 1996. Breast lesions: correlation of contrast medium enhancement patterns on MRI images with histopathologic findings and tumor angiogenesis. Radiology 200:639–649.PubMedGoogle Scholar
  17. Buckley, D., Drew, R, Mussurakis, S., Monson, J., and Horsman, A. 1997. Microvessel density of invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J. Magn. Reson. Imaging 7:461–464.PubMedCrossRefGoogle Scholar
  18. Bussolino, F., Mantovani, A., and Persico, G. 1997. Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22:251–256.Google Scholar
  19. Chakravarthy, U., and Gardiner, T. A. 1999. Endothelium-derived agents in pericyte function/dysfunction. Prog. Retin. Eye Res. 18:511–527.Google Scholar
  20. Chambers, A. F., and Matrisian, L. M. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89:160–170.CrossRefGoogle Scholar
  21. Conti, P., Lilien, D., Hawley, K., Keppler, J., Grafton, S., and Bading, J. 1996. PET and [18F]-FDG in oncology: a clinical update. Nucl. Med. Biol. 23:717–735.Google Scholar
  22. Crickard, K., Gross, J. L., Crickard, U., Yoonessi, M., Lele, S., Herblin, W. F., and Eidsvoog, K. 1994. Basic fibroblast growth factor and receptor expression in human ovarian cancer. Gynecol. Oncol. 55:277–284.Google Scholar
  23. D’Amato, R., Loughnan, M., Flynn, E., and Folkman, J. 1994. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91:4082–4085.PubMedCrossRefGoogle Scholar
  24. Darai, E., Bringuier, A.-F., Walker-Combrouze, F., Fauconnier, A., Couvelard, A., Feldmann, G., Madelenat, R, and Scoazec, J.-Y. 1998. CD31 expression in benign, borderline, and malignant epithelial ovarian tumors: an immunohistochemical and serological analysis. Gynecol. Oncol. 71:122–127.Google Scholar
  25. Davies, B., Brown, P. D., East, N., Crimmin, M. J., and Balkwill, F. R. 1993. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. 53:2087–2091.PubMedGoogle Scholar
  26. DiChiro, G. 1986. Positron emission tomography using [18F]flurodeoxyglucose in brain tumors: a powerful diagnostic and prognostic tool. Invest. Radiol. 22:360–371.Google Scholar
  27. Dirix, L. Y., Vermeulen, R. B., Pawinski, A., Prove, A., Benoy, I., De Pooter, C., Martin, M., and Oosterom, A. T. 1997. Elevated levels of the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in sera of cancer patients. Br. J. Cancer 76:238–243.PubMedCrossRefGoogle Scholar
  28. Eccles, S. A., Box, G. M., Court, W. J., Bone, E. A., Thomas, W., and Brown, R. D. 1996. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 56:2815–2822.PubMedGoogle Scholar
  29. Eisen, T., Boshoff, C., Mak, I., Sapunar, F., Vaughan, M., Pyle, L., Johnston, S., Ahern, R., Smith, I. E., and Gore, M. E. 2000. Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br. J. Cancer 82:812–817.CrossRefGoogle Scholar
  30. Eskey, C., Wolmark, N., McDowell, C., Domach, M., and Jain, R. 1994. Residence time distributions of various tracers in tumors: implications for drug delivery and blood flow measurement. J. Natl. Cancer Inst. 86:293–299.PubMedCrossRefGoogle Scholar
  31. Ferrara, N. 1995. The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res. Treat. 36:127–137.Google Scholar
  32. Ferrara, N., Houck, K., Jakeman L., and Leung, D. W. 1992. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev. 13:18–32.Google Scholar
  33. Fishman, D. A., Bafetti L. M., Banionis, S., Kearns, A. S., Chilukuri, K., and Stack, M. S. 1997. Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovarian carcinoma cells. Cancer 80:1457–1463.PubMedCrossRefGoogle Scholar
  34. Folkman, J. 1971. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285: 1182–1186.PubMedCrossRefGoogle Scholar
  35. Folkman, J. 1976. The vascularization of tumors. Sci. Am. 234:58–64.Google Scholar
  36. Folkman, J. 1997. Angiogenesis and angiogenesis inhibition: an overview. Exs. 79:1–8.PubMedGoogle Scholar
  37. Folkman, J., Hochberg, M., and Knighton, D. 1974. Self-regulation of growth in threedimensions: the role of surface area limitations. In: Clarkson, B., and Baserga, R., eds.Control of Proliferation in Animal Cells. Cold Spring Harbor Press, 833–842.Google Scholar
  38. Folkman, J., Karol, W., Ingber, D., and Hanahan, D. 1989. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61.PubMedCrossRefGoogle Scholar
  39. Garzetti, G. G., Ciavattini, A., Lucarini, G., Goteri, G., de Nictolis, M., Garbisa, S., Masiero, L., Romanini, C., and Graziella, B. 1995. Tissue and serum metalloproteinase (MMP-2) expression in advanced ovarian serous cystoadenocarcinomas: clinical and prognostic implications. Anticancer Res. 15:2799–2804.PubMedGoogle Scholar
  40. Garzetti, G. G., Ciavattini, A., Lucarini, G., Pugnaloni, A., De Nictolis, M., Amati, S., Romanini, C., and Biagini, G. 1999. Vascular endothelial growth factor expression as a prognostic index in serous ovarian cystadenocarcinomas: relationship with MIB1 immunostaining. Gynecol. Oncol. 73:396–401.Google Scholar
  41. Gatto, C., Rieppi, M., Borsotti, P., Innocenti, S., Ceruti, R., Drudis, T., Scanziani, E., Casazza, A. M., Taraboletti, G., and Giavazzi, R. 1999. BAY 1–9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin. Cancer Res. 5:3603–3607.Google Scholar
  42. Gerber, H. P., Dixit, V., and Ferrara, N. 1998. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bd-and Al in vascular endothelial cells. J. Biol. Chem. 273:13313–13316.PubMedCrossRefGoogle Scholar
  43. Ghen, C. A., Cheng W. F., Lee C. N., Chen T. M., Kung C. C., Hsieh F. J., and Hsieh, C. Y. 1999. Serum vascular endothelial growth factor in epithelial ovarian neoplasms: correlation with patient survival. Gynecol. Oncol. 74:234–240.Google Scholar
  44. Goede, V., Schmidt, T., Kimmina, S., Kozian, D., and Augustin, H. G. 1998. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78:1385–1394.Google Scholar
  45. Gospodarowicz, D., and Thakral, K. K. 1978. Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc. Natl. Acad. Sci. USA 75:847–851.PubMedCrossRefGoogle Scholar
  46. Gupta, N., Rogers, J., Rai, A., Bishop, H., Gunel, E., and Graber, G. 1999. Tumor FDG uptake as a prognostic marker of treatment response and patient outcome in lung cancer. J. Nucl. Med. Abstract 136P.Google Scholar
  47. Hanahan, D., and Folkman, J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364.PubMedCrossRefGoogle Scholar
  48. Hartenbach, E. M., Olson, T. A., Goswitz, D., Mohanraj, D., Twiggs, Carson, L. F., and Ramakrishnan, S. 1997. Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 121:169–175.Google Scholar
  49. Hata, K., Kamikawa, T., Arao, S., Tashiro, H., Katabuchi, H., Okamura, H., Fujiwaki, R., Miyazaki, K., and Fukumoto, M. 1999. Expression of the thymidine phosphorylase gene in epithelial ovarian cancer. Br. J. Cancer 79:1848–1854.PubMedCrossRefGoogle Scholar
  50. Hattori, H., Miyoshi, T., Okada, J., Yoshikawa, K., Arimizu, N., and Hattori, N. 1994. Tumor blood flow measured using dynamic computed tomography. Invest. Radiol. 29:873–876.Google Scholar
  51. Hawighorst, H., Knapstein, P., Weikel, W., Knopp, M., Knof, A., Brix, G., Schaeffer, U., Wilkens, C., Schoenberg, S., Essig, M., Vaupel, P., and van Kaick, G. 1997. Angiogenesis of uterine cervical carcinoma characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res. 57:4777–4786.PubMedGoogle Scholar
  52. Hering, E., Blekkenhorst, G., and Jones, D. 1995. Tumor blood flow measurements using coincidence counting on patients treated with neutrons. Int. J. Radiat. Oncol. Biol. Phys. 32:129–135.PubMedCrossRefGoogle Scholar
  53. Hollingsworth, H. C., Kohn, E. C., Steinberg, S. M., Rothenberg, M. L., and Merino, M. J. 1995. Tumor angiogenesis in advanced stage ovarian carcinoma. Am. J. Pathol 147:9–19.Google Scholar
  54. Holmgren, L., O’Reilly M. S., and Folkman, J. 1995. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1:149–153.Google Scholar
  55. Ito, K., Kato, T., and Tadokoro, M. 1992. Recurrent rectal cancer and scar: differentiation with PET and MR imaging. Radiology 182:549–552.PubMedGoogle Scholar
  56. Jain, R. K. 1990. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis. Rev. 9:253–266.Google Scholar
  57. Jain, R. K., Safabakhsh, N., Sckell, A., Chen, Y., Jiang, P., Benjamin, L., Yuan, F., and Keshet, E. 1998. Endothelial cell death, angiogenesis, and microvacular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA 95:10820–10825.PubMedCrossRefGoogle Scholar
  58. Klauber, N., Parangi, S., Flynn, E., Hamel, E., and D’Amato, R. J. 1997. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors-methoxyestradiol and taxol. Cancer Res. 57:81–86.PubMedGoogle Scholar
  59. Klein, S., Roghani, M., and Rifkin, D. B. 1997. Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. Exs. 79:159–192.PubMedGoogle Scholar
  60. Kohn, E. C., Alessandro, R., Spoonster, J., Wersto, R., and Liotta, L. A. 1995. Angiogenesis: role of calcium-mediated signal transduction. Proc. Natl. Acad. Sci. USA 92:1307–1311.CrossRefGoogle Scholar
  61. Kohn, E. C., Felder, C. C., Jacobs, W, Holmes, K. A., Day, A. E, Freer, R., and Liotta, L. A. 1994c. Structure function analysis of signal and growth inhibition by carboxyamidotriazole, CAI. Cancer Res. 54:935–942.Google Scholar
  62. Kohn, E. C., Figg, W. D., Sarosy, G. A., Bauer, K. S., Davis, P. A., Soltis, M. J., Thompkins, A., Liotta, L. A., and Reed, E. 1997. Phase I trial of micronized formulation CAI in patients with refractory solid tumors: pharmacokinetics, clinical outcome and comparison of formulations. J. Clin. Oncol 15:1985–1993.PubMedGoogle Scholar
  63. Kohn, E. C., Jacobs, W., Kim, Y. S., Alessandro, R., Stetler-Stevenson, W. G., and Liotta, L. A. 1994b. Calcium influx modulates expression of matrix metalloproteinase (7 kDa type IV collagenase, gelatinase A) expression. J. Biol. Chem. 269:21505–21511.Google Scholar
  64. Kohn, E. C., and Liotta, L. A. 1990. L65158, a novel antiproliferative and antimetastasis agent. J. Natl. Cancer Inst. 8:54–60.CrossRefGoogle Scholar
  65. Kohn, E. C., and Liotta, L. A. 1995. Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res. 55:1856–1862.PubMedGoogle Scholar
  66. Kohn, E. C., Reed, E., Sarosy, G., Christian, M., Link, C. J., Cole, K., Figg, W. D., Davis, P. A., Jacob, J., Goldspiel, B., and Liotta, L. A. 1996. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res. 56:569–573.PubMedGoogle Scholar
  67. Kohn, E. C., Sandeen, M. A., and Liotta, L. A. 1992. In vivo efficacy of a novel inhibitor of selected signal transduction pathways including calcium, arachidonate, and inositol phosphates. Cancer Res. 52:3208–3212.PubMedGoogle Scholar
  68. Kohn, E. C., Sarosy, G., Bicher, A., Link, C., Christian, M., Ognibene, E P., Cunnion, R., Steinberg, S., Adamo, D. O., and Davis, P. 1994a. Dose intense taxol: high response rate in patients with platinum-resistant recurrent ovairan cancer. J. Natl. Cancer Inst. 86:18–24.CrossRefGoogle Scholar
  69. Leenders, K. 1994. PET-blood flow and oxygen consumption in brain tumors. J. Neurooncol. 22:269–273.PubMedCrossRefGoogle Scholar
  70. Libutti, S., Choyke, P., Carrasquillo, J., Bacharach, S., and Neumann, R. 1999. Monitoring responses to antiangiogenic agents using noninvasive imaging tests. Cancer J. Sci. Am. 5:252–256.Google Scholar
  71. Liotta, L. A., Kleinerman, J., and Saidel, G. 1974. Quantitative relationships of intravascular tumor cells: tumor vessels and pulmonary metastases following tumor implantation. Cancer Res. 34:997–1003.PubMedGoogle Scholar
  72. Liotta, L. A., Saidel, M. G., and Kleinerman, J. 1976. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 36:889–894.PubMedGoogle Scholar
  73. Luzzi, K. J., Varghese, H. J., MacDonald, I. C., Kohn, E. C., Schmidt, E. E., Morris, V. L., Chambers, F., and Groom, A. C. 1998. Inhibition of angiogenesis in liver metastases by carboxyamidotriazole (CAI): computer assisted analysis. Angiogenesis 2:373–379.PubMedCrossRefGoogle Scholar
  74. Mankoff, D., Dunnwald, L., Gralow, J., Ellis, G., Charlop, A., and Livingston, R. 1999. Changes in blood flow and metabolism in locally advance breast cancer in response to presurgical chemotherapy. J. Nucl. Med. 40(abstract):137P.Google Scholar
  75. McGuire, W. P., Hoskins, W. J., Brady, M. F., Kucera, P. R., Partridge, E. E., and Look, K. Y. 1996. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients wtih stage III and stage IV ovarian cancer. N. Engl. J. Med. 334:1–6.PubMedCrossRefGoogle Scholar
  76. McLaren, J., Prentice, A., Charnock-Jones, D. S., and Smith, S. K. 1996a. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum. Reprod. 11:220–223.Google Scholar
  77. McLaren, J., Prentice, A., Charnock-Jones, D. S., Millican, S. A., Muller, K. H., Sharkey, A. M., and Smith, S. K. 1996b. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98:482–489.CrossRefGoogle Scholar
  78. Modlich, U., Kaup, F.-J., and Augustin, H. G. 1996. Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab. Invest. 74:771–780.Google Scholar
  79. Neeman, M., Abramovitch, R., Schiffenbauer, Y. S., and Tempel, C. 1997. Regulation of angiogenesis by hypoxic stress: from solid tumors to the ovarian follicle. Int. J. Exp. Pathol. 78:57–70.PubMedCrossRefGoogle Scholar
  80. Neufeld, G., Cophen, T., Gengrinovitch, S., and Poltorak, Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22.PubMedGoogle Scholar
  81. Nguyen, M., Watanabe H., and Budson, A. E. 1994. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl. Cancer Inst. 86:356–361.PubMedCrossRefGoogle Scholar
  82. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., and Folkman, J. 1993. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J. Natl. Cancer Inst. 85:241–242.PubMedCrossRefGoogle Scholar
  83. Obermair, A., Wasicky, R., Kaider, A., Preyer, O., Losch, A., Leodolter, S., and Kolbl, H. 1999. Prognostic significance of tumor angiogenesis in epithelial ovarian cancer. Cancer Lett. 138:175–182.PubMedCrossRefGoogle Scholar
  84. Orre, M., Lofti-Miri, M., Mamers, P., and Rogers, P. A. W. 1998. Increased microvessel density in mucinous compared with malignant serous and benign tumors of the ovary. Br. J. Cancer 77:2204–2209.PubMedCrossRefGoogle Scholar
  85. Orre, M., and Rogers, P. A. 1999. VEGF, VEGFR-1, VEGFR-2, microvessel density and endothelial cell proliferation in tumours of the ovary. Int. J. Cancer 84:101–108.Google Scholar
  86. Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., and Ramakrishnan, S. 1997. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80:98–106.PubMedCrossRefGoogle Scholar
  87. Pearlman, J., Hibberd, M., Chuang, M., Harada, K., Lopez, J., Gladstone, S., Friedman, M., Sellke, F., and Simons, M. 1995. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat. Med. 1:1085–1089.Google Scholar
  88. Reynolds, K., Farzaneh, F., Collins, W. P., Campbell, S., Bourne, T. H., Lawton, F., Moghaddam, A., Harris, A. L., and Bicknell, R. 1994. Association of ovarian malignancy with expression of platelet-derived endothelial cell growth factor. J. Natl. Cancer Inst. 86:1234–1238.PubMedCrossRefGoogle Scholar
  89. Rosen, E. M., and Goldberg, I. D. 1995a. Regulation of scatter factor (hepatocyte growth factor) production by tumor-stroma interaction. Exs. 74:17–31.Google Scholar
  90. Rosen, E. M., and Goldberg, I. D. 1995b. Scatter factor and angiogenesis. Adv. Cancer Res. 67:257–279.CrossRefGoogle Scholar
  91. Rowinsky, E. K., Humphrey, R., Hammond, A., Aylesworth, C., Smetzer, L., Hidalgo, M., Morrow, M., Smith, L., Garner, A., Sorensen, J. M., Von Hoff, D. D., and Eckhardt, S. G. 2000. Phase I and pharmacologic study of the specific matrix metalloproteinase inhibitor BAY 1–9566 on a protracted oral daily dosing schedule in patients with solid malignancies. J. Clin. Oncol 18:178–186.PubMedGoogle Scholar
  92. Sagar, S., Klassen, G., Barclay, K., and Aldrich, J. 1993. Tumour blood flow: measurement and manipulation for therapeutic gain. Cancer Treat. Rev. 19:299–349.Google Scholar
  93. Schelbert, H. 1994. Blood flow and metabolism by PET. Cardiol. Clin. 12:303–315.Google Scholar
  94. Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., Keshet, E., and Neeman, M. 1997. Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proc. Natl. Acad. Sci. USA 94:13203–13208.PubMedCrossRefGoogle Scholar
  95. Schoell, W. M., Pieber, D., Reich, O., Lahousen, M., Janicek, M., Guecer F., and Winter, R. 1977. Tumor angiogenesis as a prognostic factor in ovarian carcinoma: quantification of endothelial immunoreactivity by image analysis. Cancer 80:2257–2262.CrossRefGoogle Scholar
  96. Senger, D. R., Galli, S. J., Dvorak, A. M., Pernuzzi, C. A., Harvey, V. S., and Dvorak, H. F. 1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985.PubMedCrossRefGoogle Scholar
  97. Sills, A. K., Williams, J. I., Tyler, B. M., Epstein, D. S., Sipos, E. P., Davis, J. D., McLane, M. P., Pitchford, S., Cheshire, K., Gannon, F. H., Kinney, W. A., Chao, T. L., Donowitz, M., Laterra, J., Zasloff, M., and Brem, H. 1998. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. 58:2784–2792.PubMedGoogle Scholar
  98. Singh, R. K., Gutman, M., Bucana, C. D., Sanchez, R., Llansa M., and Fidler, I. J. 1995. Interferons a and ß down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA. 92:4562–4566.PubMedCrossRefGoogle Scholar
  99. Smith, S. K. 1997. Angiogenesis. Semin. Reprod. Endocrinol. 158:221–227.Google Scholar
  100. Taraboletti, G., Garofalo, A., Belotti, D., Drudis, T., Borsotti, P., Scanziani, E., Brown, R D., and Giavazzi, R. 1995. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst. 87:293–298.PubMedCrossRefGoogle Scholar
  101. Tempfer, C., Obermair, A., Hefler, L., Haeusler, G., Gitsch, G., and Kainz, C. 1998. Vascular endothelial growth factor serum concentrations in ovarian cancer. Obstet. Gynecol. 92:360–363.CrossRefGoogle Scholar
  102. van Dijke, C., Brasch, R., Roberts, T., Weidner, N., Mathur, A., Shames, D., Mann, J., Demsar, F., Lang, R, and Schwickert, H. 1996. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MRI imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 198:813–818.PubMedGoogle Scholar
  103. Vazquez, F., Rodriguez-Manzaneque, J. C., Lydon, J. R, Edwards, D. R, O’Malley, B. W., and Iruela-Arispe, M. L. 1999. Progesterone regulates proliferation of endothelial cells. J. Biol. Chem. 274:2185–2192.PubMedCrossRefGoogle Scholar
  104. Vu, T. H., Shipley, J. M., Bergers, G., Berger, J. E., Helms, J. A., Hanahan, D., Shapiro, S. D., Senior, R. M., and Werb, Z. 1998. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422.PubMedCrossRefGoogle Scholar
  105. Wang, X., Fu, X., Brown, P. D., Crimmin, M. J., and Hoffman, R. M. 1994. Matrix metalloproteinase inhibitor BB-94 (Batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res. 54:4726–4728.PubMedGoogle Scholar
  106. Watson, S. A., Morris, T. M., Parsons, S. L., Steele, R. J., and Brown, P. D. 1996. Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model. Br. J. Cancer 74:1354–1358.PubMedCrossRefGoogle Scholar
  107. Weidner, N., and Folkman, J. 1996. Tumor vascularity as a prognostic factor in cancer. In: DeVita, V. T., Hellman, S., and Rosenberg, S. A., eds. Important advances in Oncology 1996. Lippincott-Raven, Philadelphia, pp. 167–190.Google Scholar
  108. Weidner, N., Semple, J. P., Welch, W. R., and Folkman, J. 1991. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324:1–8.PubMedCrossRefGoogle Scholar
  109. Zebrowski, B. K., Liu, W., Ramirez, K., Akagi, Y., Mills, G. B., and Ellis, L. M. 1999. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol. 6:373–378.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Elise C. Kohn
  • Steven K. Libutti

There are no affiliations available

Personalised recommendations