Skip to main content

The Role of the Extracellular Matrix and Its Receptors in Modulating Cardiac Development

  • Chapter
Formation of the Heart and Its Regulation

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

  • 142 Accesses

Abstract

Fundamental to the differentiation and morphogenesis of any organ is the interaction between its component cells and the extracellular matrix (ECM). In the early 1980s, the concept of dynamic reciprocity was introduced (Bissell et al, 1982), which proposed that the ECM produced by cells was in turn critical in the regulation of gene expression by these same cells. Studies to date, especially with isolated cells, have shown that the ECM has a profound influence on many cellular processes including the regulation of gene expression (for recent reviews, see Aumailley and Gayraud, 1998; Mauch, 1998). However, it is not yet known how these in vitro results relate to the development of the heart in vivo. The past 20 years have yielded an explosion of papers on this topic, which clearly document the importance of cell-ECM interactions in modulating fundamental cell properties such as differentiation, proliferation, migration, adhesion, and even survival. All of these biologic events are essential to the formation of tissues and organs including those within the cardiovascular system. This chapter focuses on how the components of the ECM influence the formation and function of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albelda, S.M., and Buck, C.A. (1990). Integrins and other cell adhesion molecules.FASEB J4:2868–2880.

    PubMed  CAS  Google Scholar 

  • Alexander, S.M., Jackson, K.J., Bushnell, K.M., and McGuire, P.G. (1997). Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart.Dev Dyn209:261–268.

    Article  PubMed  CAS  Google Scholar 

  • Alves, F., Vogel, W., Mossie, K., Millauer, B., Hofler, H., and Ullrich, A. (1995). Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer.Oncogene10:609–618.

    PubMed  CAS  Google Scholar 

  • Aplin, A.E., Howe, A., Alahari, S.K., and Juliano, R.L. (1998). Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins.Pharmacol Rev50:197–263.

    PubMed  CAS  Google Scholar 

  • Appeddu, P.A., and Shur, B.D. (1994). Molecular analysis of cell surface 13galactosyltransferase function during cell migration.Proc Natl Acad Sci USA91:2095–2099.

    Article  PubMed  CAS  Google Scholar 

  • Aumailley, M., and Gayraud, B. (1998). Structure and biological activity of the extracellular matrix.J Mol Med76:253–265.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, H.S., and Buck, C.A. (1994). Integrins and other cell adhesion molecules in cardiac development.Trends Cardiovasc Med4:178–187.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, H.S., Lloyd, T.R., and Solursh, M. (1994). Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ.Circ Res74:244–252. Baldwin, H.S., and Solursh, M. (1994). Degradation of hyaluronic acid does not prevent looping of the mammalian heart in situ.Dev Biol136:555–559.

    Article  Google Scholar 

  • Begovac, P.C., Shi, Y.X., Mansfield, D., and Shur, B.D. (1994). Evidence that cell surface 131 4-galactosyltransferase spontaneously galactosylates an underlying laminin substrate during fibroblasts migration.J Biol Chem269:31793–31799.

    PubMed  CAS  Google Scholar 

  • Bertelli, R., Valenti, F., Oleggini, R., et al. (1998). Cell-specific regulation of alpha 1 (III) and alpha 2 (V) collagen by TGF-beta 1 in tubulointerstitial cell models.Nephrol Dial Transplant13:573–579.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J.E. (1998). Regulation of cardiovascular collagen deposition by mechanical forces.Mol Med Today4:69–75.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J.E., and Laurent, G.J. (1995). Collagen turnover and its regulation in the normal and hypertrophying heart.Eur Heart J16 (suppl C):38–44.

    PubMed  CAS  Google Scholar 

  • Bishop, J.E., Rhodes, S., Laurent, G.J., Low, R.B., and Stirewalt, W.S. (1994). Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload.Cardiovasc Res28:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  • Bissell, M.J., Hall, H.G., and Parry, G. (1982). How does the extracellular matrix direct gene expression?JTheor Biol99:31–68.

    Article  PubMed  CAS  Google Scholar 

  • Borg, K., Burgess, W., Terracio, L., and Borg, T.K. (1997). Expression of metalloproteases by cardiac myocytes and fibroblasts in vitro.Cardiovasc Pathol6:261–269.

    Article  CAS  Google Scholar 

  • Borg, T.K., and Caulfield, J.B. (1979). Collagen in the heart.Tex Rep Biol Med39:321–333. Borg, T.K., and Caulfield, J.B. (1981). The collagen matrix of the heart.Fed Proc40:2037–2041.

    Google Scholar 

  • Borg, T.K., Klevay, L.M., Gay, R.E., Siegel, R., and Bergin, M.E. (1985). Alteration of the connective tissue netwrok of striated muscle in copper deficient rats.J Mol Cell Cardiol17:1173–1183.

    Article  PubMed  CAS  Google Scholar 

  • Borg, T.K., and Terracio, L. (1990). Interaction of the extracellular matrix with cardiac myocytes during development and disease. In: Robinson, T., ed.Issues in Biomedicine.Karger, Basel, pp. 113–129.

    Google Scholar 

  • Bronner-Fraser, M. (1994). Neural crest cell formation and migration in the developing embryo.FASEB J8:699–706.

    PubMed  CAS  Google Scholar 

  • Bronner-Fraser, M. (1995). Patterning of the vertebrate neural crest.Perspect Der; Neurobiol3:53–62.

    CAS  Google Scholar 

  • Burgess, W.H., and Maciag, T. (1989). The heparin-binding (fibroblast) growth factor family of proteins.Annu Rev Biochem58:575–606.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, D.A., Tuckwell, D.S., Eble, J., KĂĽhn, K., and Humphries, M.J. (1997). The integrin a, A-domain is a ligand binding site for collagens and laminin.J Biol Chem272:12311–12317.

    Article  PubMed  CAS  Google Scholar 

  • Capasso, J.M., Robinson, T.F., and Anversa, P. (1989). Alterations in collagen cross-linking impair myocardial contractility in the mouse heart.Circ Res65:1657–1664.

    Article  PubMed  CAS  Google Scholar 

  • Carey, D.J., Evans, D.M., Stahl, R.C., et al. (1992). Molecular cloning and characterization of N-syndecan, a novel transmembrane heparan sulfate proteoglycan.J Cell Biol117:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Carver, W, Nagpal, M., Nachtigal, M., Borg, T.K., and Terracio, L. (1991). Collagen expression in mechanically stimulated cardiac fibroblasts.Circ Res69:113–119.

    Article  Google Scholar 

  • Carver, W., Price, R.L., Raso, D.S., Terracio, L., and Borg, T.K. (1994). Distribution of 31 integrin in the developing rat heart.J Histochem Cytochem42:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Carver, W., and Terracio, L. (1993). Integrin-mediated cell-matrix interactions in heart development and in disease.Heart Failure8:255–263.

    Google Scholar 

  • Carver, W., Terracio, L., and Borg, T.K. (1993). Collagen expression and accumulation in the neonatal heart.Anat Rec236:511–520.

    Article  PubMed  CAS  Google Scholar 

  • Carver, W, Terracio, L., and Borg, T.K. (1997). Extracellular matrix maturation and heart formation. In: Burggren, W.W., and Keller, B.B., eds.Development of Cardiovascular Systems: Molecules to Organisms.Cambridge University Press, Cambridge, pp. 43–57.

    Google Scholar 

  • Caulfield, J.B., and Borg, T.K. (1979). The collagen network of the heart.Lab Invest40:354–371.

    Google Scholar 

  • Celentano, D.C., and Frishman, W.H. (1997). Matrix mettaloproteinases and coronary artery disease: a novel therapeutic approach.J Clin Pharmacol37:991–1000.

    PubMed  CAS  Google Scholar 

  • Chapman, D., Weber, K.T., and Eghbali, M. (1991). Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium.Circ Res67:787–944.

    Article  Google Scholar 

  • Cheah, K.S., Lau, E.T., and Au, P.K. (1991). Expression of the mouse alpha 1 (II) collagen gene is not restricted to cartilage during development.Development111:945–953.

    PubMed  CAS  Google Scholar 

  • Chua, C.C., Chua, B.H., Zhoa, Z.Y., Krebs, C., Diglio, C., and Perrin, E. (1991). Effect of growth factors on collagen metabolism in cultured heart fibroblasts.Connect Tissue Res26:271–181.

    Article  PubMed  CAS  Google Scholar 

  • Cleutjens, J.P.M. (1996). The role of matrix metalloproteinases in heart disease.Cardiovasc Res32:816–821.

    PubMed  CAS  Google Scholar 

  • Couchman, J.R., Austria, R., Woods, A., and Hughes, R.C. (1988). Adehesion defective BHK cell mutant has cell sruface heparan sulfate proteoglycan of altered properties.J Cell Physiol136:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Crossin, K.L., and Hoffman, S. (1991). Expression of adhesion molecules during the formation and differentiation of the avian endocardial tissue.Dev Biol145:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Dickeson, S.K., and Santoro, S.A. (1998). Ligand recognition by the I domain-containing integrins.Cell Mol Life Sci54:556–566.

    Article  PubMed  CAS  Google Scholar 

  • Duband, J.L., Volberg, T., Sabanay, I., Thiery, J.P., and Geiger, B. (1988). Spatial and temporal distribution of the adherens-junction-associated adhesion molecule A-CAM during avian embryogenesis.Development103:325–344.

    PubMed  CAS  Google Scholar 

  • Dubois, D.H., and Shur, B.D. (1995). Cell surface Ăź1 4-galactosyltransferase: a signal transducing receptor? In: Alavi, A., and Axford, J.S., eds.Glycoimmunology.Plenum Press, New York, pp. 105–114.

    Chapter  Google Scholar 

  • Eckstein, D.J., and Shur, B.D. (1989) Laminin induces the stable expression of surface galactosyltransferase on lamellipodia of migrating cells.J Cell Biol108:2507–2517.

    Article  PubMed  CAS  Google Scholar 

  • Eckstein, D.J., and Shur, B.D. (1992). Cell surface 131 4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells.Exp Cell Res201:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Eghbali, M., Tomek, R., Sukhatme, V.P., Woods, C., and Bahmbi, B. (1991). Differential effects of transforming growth factor-1 and phorbol myristate acetate on cardiac fibroblasts: regulation of collagen mRNAs and expression of early transcription factors.Circ Res69:483–490.

    Article  PubMed  CAS  Google Scholar 

  • Eghbali, M., and Weber, K.T. (1990). Collagen and the myocardium: fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression.Mol Cell Biochem96:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Evans, S.C., Lopez, L.C., and Shur, B.D. (1993). Dominant negative mutation in cell surface 131 4-galactosyltransferase inhibits cell-cell and cell-matrix interactions.J Cell Biol120:1045–1057.

    Article  PubMed  CAS  Google Scholar 

  • Fleoge, J., Eng, E., Young, B.A., et al. (1993). Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matric accumulation in rats.J Clin Invest92:2952–2962.

    Article  Google Scholar 

  • Gallagher, J.T., Lyon, M., Stopak, D., and Steward, W.P. (1986). Structure and function of heparan sulfate proteoglycans.Biochem J236:313–325.

    PubMed  CAS  Google Scholar 

  • Geiger, B., and Ayalon, 0. (1992). Cadherins.Annu Rev Cell Biol8:307–332.

    Article  PubMed  CAS  Google Scholar 

  • Goncharova, E.J., Kam, Z., and Geiger, B. (1992). The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes.Development114:173–183.

    PubMed  CAS  Google Scholar 

  • Hatta, K., Takagi, S., Fujisawa, H., and Takeichi, M. (1987). Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos.Dev Biol120:215–227.

    Article  PubMed  CAS  Google Scholar 

  • Hertig, C.M., Eppenberger-Eberhardt, M., Koch, S., and Eppenberger, H.M. (1996). Ncadherin in adult rat cardiomyocytes in culture. I. Functional role of N-cadherin and impairment of cell-cell contact by a truncated N-cadherin mutant.J Cell Sci109:1–10.

    PubMed  CAS  Google Scholar 

  • Hierck, B.P., Poelmann, R.E., van Iperen, L., Brouwer, A., and Gittenberger-de Groot, A.C. (1996). Differential expression of alpha-6 and other subunits of laminin binding integrins during development of the murine heart.Dey Dyn206:100–111.

    Article  CAS  Google Scholar 

  • Hilenski, L., Terracio, L., and Borg, T.K. (1991). Myofibrillar and cytoskeletal assembly in neonatal rat cardiac myocytes cultured on laminin and collagen.Cell Tissue Res264:577–587.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, D.A., Evans, S.C., and Shur, B.D. (1995). Altering the expression of cell surface f31 4-galactosyltransferase modulates cell growth.Exp Cell Res219:640–649.

    Article  PubMed  CAS  Google Scholar 

  • Hori, Y., Katoh, T., Hirakata, M., et al. (1998). Anti-latent TGF-beta binding protein-1 antibody or synthetic oligopeptides inhibit extracellular matrix expression induced by stretch in cultured rat mesangial cells.Kidney Int53:1616–1625.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R.O. (1996). Targeted mutations in cell adhesion genes: What have we learned from them?Dey Biol180:402–412.

    Article  CAS  Google Scholar 

  • Imanaka-Yoshida, Y., Sanger, J.M., and Sanger, J.W. (1993). Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes.Cell Motil Cytoskel26:301–312.

    Article  CAS  Google Scholar 

  • Iruela-Arispe, M.L., and Sage, E.H. (1991). Expression of type VIII collagen during morphogenesis of the chicken and mouse heart.Dey Biol144:107–118.

    Article  CAS  Google Scholar 

  • Jackson, R.L., Busch, S.J., and Cardin, A.D. (1991). Glycosaminoglycans: molecular properties, proteins interactions and roles in physiological processes.Physiol Rev71:481–522.

    PubMed  CAS  Google Scholar 

  • Johnson, J.D., Edman, J.C., and Rutter, W.J. (1993). A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain.Proc Natl Acad Sci USA90:5677–5681.

    Article  PubMed  CAS  Google Scholar 

  • Kam, T., Holtrich, U., Brauninger, A., et al. (1993). Structure, expression and chromosomal mapping of TKT from man and mouse: a new subclass of receptor tyrosine kinases with a factor VIII-like domain.Oncogene8:3433–3440.

    Google Scholar 

  • Katchman, S.D., Hsu-Wong, S., Ledo, I., Wu, M., and Uitto, J. (1994). Transforming growth factor-beta up-regulates human elastin promoter activity in transgenic mice.Biochem Biophys Res Commun203:485–490.

    Article  PubMed  CAS  Google Scholar 

  • Kjellen, L., and Lindahl, U. (1991). Proteoglycans: structures and interactions.Annu Rev Biochem60:443–475.

    Article  PubMed  CAS  Google Scholar 

  • Kratochwil, K., Dziadek, M., Lohler, J., Harbers, K., and Jaenisch, R. (1986). Normal epithelial branching morphogenesis in the absence of collagen I.Dey Biol117:596606.

    Google Scholar 

  • Lai, C., and Lemke, G. (1994). Structure and expression of the Tyro 10 receptor tyrosine kinase.Oncogene9:877–883.

    PubMed  CAS  Google Scholar 

  • Lemmon, M.A., and Schlessinger, J. (1994). Regulation of signal transduction and signal diversity by receptor oligomerization.Trends Biochem Sri19:459–463.

    Article  CAS  Google Scholar 

  • Lertchirakarn, V., Birner, R., and Messer, H.H. (1998). Effects of interleukin-1 beta on human pulpal fibroblast proliferation and collagen synthesis.J Endodontics24:409–413.

    Article  CAS  Google Scholar 

  • Lin, E.C.K., Ratnikov, B.I., Tsai, P.M., et al. (1997). Evidence that the integrin 3 and 13subunits contain a metal ion-dependent adhesion site-like motif but lack and I domain.J Biol Chem272:14236–14243.

    Article  PubMed  CAS  Google Scholar 

  • Linask, K.K., Knudsen, K.A., and Gui, Y.H. (1997). N-cadherin-catenin interaction: necessary component of cardiac cell compartmentalization during early vertebrate heart development.Dey Biol185:148–164.

    Article  CAS  Google Scholar 

  • Linask, K.K., and Lash, J.W. (1988). A role for fibronectin in the migration of avian pre-cardiac cells. Dose-dependent effects of fibronectin antibody.Dey Biol129:315–323.

    Article  CAS  Google Scholar 

  • Little, C.D., Piquet, D.M., Davis, L.A., Walters, L., and Drake, C.J. (1989). Distribution of laminin, collagen type IV, collagen type I, and fibronectin in chicken cardiac jelly/ basement membrane.Anat Rec224:417–425.

    Article  PubMed  CAS  Google Scholar 

  • Little, C.D., and Rongish, B.J. (1995). The extracellular matrix during heart development.Experentia51:873–882.

    Article  CAS  Google Scholar 

  • Loeber, C.P., and Runyan, R.B. (1990). A comparison of fibronectin, laminin and galactosyltransferase adhesion mechanisms during embryonic cardiac mesenchymal cell migration in vitro.Devel Biol140:401–412.

    Article  CAS  Google Scholar 

  • Lohler, J., Timpl, R., and Jaenisch, R. (1984). Embryonic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death.Cell38:597–607.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, L.C., Youakim, A., Evans, S.C., and Shur, B.D. (1991). Evidence for a molecular distinction between Golgi and cell surface forms of Ăźl 4-galactosyltransferase.J Biol Chem266:15984–15991.

    PubMed  CAS  Google Scholar 

  • Maillet, C.M., and Shur, B.D. (1994). Perturbing cell surface 131 4-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis.J Cell Sci107:1713–1724.

    PubMed  CAS  Google Scholar 

  • Mauch, C. (1998). Regulation of connective tissue turnover by cell-matrix interactions.Arch Dermatol Res290:530-S60.

    Article  Google Scholar 

  • McGuire, P.G., and Alexander, S.M. (1993). Urokinase production by embryonic endocardial-derived cells: regulation by substrate composition.Dev Biol155:442–451.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, P.G., and Orkin, R.W. (1992). Urokinase activity in the developing avian heart: a spatial and temporal analysis.Dev Dyn193:24–33.

    Article  PubMed  CAS  Google Scholar 

  • Mjaatvedt, C.H., Yamamura, H., Capehart, A.A., Turner, D., and Markwald, R. (1998). The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation.Dev Biol202:56–66.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch, A.D., Liu, B., Schwarting, R., Tuan, R.S., and lozzo, R.V. (1994). Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization.J Histochem Cytochem42:239–249.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M., Terracio, L., Carver, W., Birkedal-Hansen, H., and Borg, T.K. (1992). Expression of collagenase and IL-1 alpha in developing rat hearts.Dev Dyn195:87–99.

    Article  PubMed  CAS  Google Scholar 

  • Nathalie, B., Merval, R., Benessiano, J., Samuel, J.-L., and Tedgui, A. (1996). Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta: evidence for a pressure-induced tissue renin-angiotensin system.Circ Res79:70–78.

    Article  Google Scholar 

  • Okada, Y., Katsuda, S., Watanabe, H., and Kakanisha, I. (1993). Collagen synthesis of human arterial smooth muscle cells: effects of platelet-derived growth factor, transforming growth factor-beta, and interleukin-1.Acta Pathol Jpn43:160–167.

    PubMed  CAS  Google Scholar 

  • Ong, L.L., Kim, N., Mima, T., Cohen-Gould, L., and Mikawa, T. (1998). Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity.Dev Biol193:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Price, R., Nakagawa, M., Terracio, L., and Borg, T.K. (1992). Ultrastructural localization of laminin on in vivo embryonic, neonatal and adult rat cardiac myocytes and in early rat embryos raised in whole embryo culture.J Histochem Cytochem40:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  • Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., and Hynes, R.O. (1997). Developmental defects in mouse embryos lacking N-cadherin.Dev Biol181:64–78.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, D., Sanger, J.M., and Sanger, J.W. (1990). The premyofibril: evidence for its role in myofibrillogenesis.Cell Motil Cytoskel28:1–24.

    Article  Google Scholar 

  • Robinson, T.F., Factor, S.M., Capasso, J.M., Wittenberg, B.A., Blumenfeld, O.O., and Seifter, S. (1987). Morphology and function of struts between cardiac myocytes of rat and hamster.Cell Tissue Res249:247–255.

    CAS  Google Scholar 

  • Rongish, B.J., Hinchman, G., Doty, M.K., Baldwin, H.S., and Tomanek, R.J. (1996). Relationship of the extracellular matrix to coronary neovascularization during development.

    Google Scholar 

  • Rosales, C., O’Brien, V., Kornberg, L., and Juliano, R. (1995). Signal transduction by cell adhesion receptors.Biochim Biophys Acta1242:77–98.

    PubMed  Google Scholar 

  • Runyan, R.B., and Markwald, R.R. (1983). Invasion of mesenchyme into three dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue.Dev Biol95:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Runyan, R.B., Versalovic, J., and Shur, B.D. (1988). Functionally distinct laminin receptors mediate cell adhesion and spreading: the requirement for surface galactosyltransferase in cell spreading.J Cell Biol107:1863–1871.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E., and Engvall, E. (1997). Integrins and vascular extracellular matrix assembly.J Clin Invest100:S53–S56.

    PubMed  CAS  Google Scholar 

  • Sadoshima, J., and Izumo, S. (1993). Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/ paracrine mechanism.EMBO J12:1681–1692.

    PubMed  CAS  Google Scholar 

  • Sadoshima, J., and Izumo, S. (1994). Roles of integrins in cell swelling-induced tyrosine phosphorylation in cardiac myocytes.Circulation90:291–305.

    Article  Google Scholar 

  • Sadoshima, J., and Izumo, S. (1995). Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytesin vitro.Potential role of 70 kD S6 kinase in angiotensin II-induced cardiac hypertrophy.Circ Res77:1040–1052.

    Article  PubMed  CAS  Google Scholar 

  • Sadoshima, J., Xu, Y., Slayter, H.S., and Izumo, S. (1993). Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytesin vitro. Cell75:972–984.

    Google Scholar 

  • Schlessinger, J. (1997). Direct binding and activation of receptor tyrosine kinases by collagen.Cell91:869–872.

    Article  PubMed  CAS  Google Scholar 

  • Scholzen, T., Solursh, M., Suzuki, S., et al. (1994). The murine decorin: complete cDNA cloning, genomic organization, chromosomal assignment, and expression during organogenesis and tissue differentiation.J Biol Chem269:28270–28281.

    PubMed  CAS  Google Scholar 

  • Shrivastava, A., Radziejewski, C., Campbell, E., et al. (1997). An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors.Mol Cell1:25–34.

    Article  PubMed  CAS  Google Scholar 

  • Shur, B.D. (1989). Expression and function of cell surface glactosyltransferase.Biochim Biophys Acta988:389–409.

    Article  PubMed  CAS  Google Scholar 

  • Silbiger, S., Lei, J., Ziyadeh, F.N., and Neugarten, J. (1998). Estradiol reverses TGF-betalstimulated type IV collagen gene transcription in murine mesangial cells.Am J Physiol274:F1113–1118.

    PubMed  CAS  Google Scholar 

  • Simpson, D.G., Reaves, T.A., Shih, S.T., Burgess, W., Borg, T.K., and Terracio, L. (1998). Cardiac integrins: the ties that bind.Cardiovasc Pathol7:135–143.

    Article  CAS  Google Scholar 

  • Simpson, D.G., Terracio, L., Terracio, M., Price, R.L., Turner, D.C., and Borg, T.K. (1994). Modulation of cardiac myocyte phenotypein vitroby the composition and orientation of the extracellular matrix.J Cell Physiol161:89–105.

    Article  PubMed  CAS  Google Scholar 

  • Sinning, A.R., Lepera, R.C., and Markwald, R.R. (1988). Initial expression of type I procollagen in chick cardiac mesenchyme is dependent upon myocardial stimulation.Dev Biol130:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Soler, A.P., and Knudsen, K.A. (1994). N-cadherin involvement in cardiac myocyte interaction and myofibrillogenesis.Dev Biol162:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Song, W.K., Wand, W., Foster, R.F., Biesler, D.A.S., and Kaufman, S.J. (1992). H36-a, is a novel integrin a chain that is developmentally regulated during skeletal myogenesis.JCell Biol117:643–657.

    Article  PubMed  CAS  Google Scholar 

  • Spence, S.G., Argraves, W.S., Walters, L., Hungerford, J.E., and Little, C.D. (1992). Fibulin is localized at sites of epithelial-mesenchymal transitions in early avian embryos.Dev Biol151:473–484.

    Article  PubMed  CAS  Google Scholar 

  • Springer, T.A. (1997). Folding of the N-terminal, ligand-binding region of integrin a-subunits into a 13-propellor domain.Proc Natl Acad Sci USA94:65–72.

    Article  PubMed  CAS  Google Scholar 

  • Stepp, M.A., Urry, L.A., and Hynes, R.O. (1994). Expression of atintegrin mRNA and protein and fibronectin in the early chicken embryo.Cell Adhesion Commun2:359–375.

    Article  CAS  Google Scholar 

  • Taber, L.A., Keller, B.B., and Clark, E.B. (1992). Cardiac mechanics in the stage 16 chick embryo.J Biomech Eng114:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Takada, Y., Kamata, T., Irie, A., Puzon-McLaughlin, W., and Zhang, X.P. (1997). Structural basis of integrin-mediated signal transduction.Matrix Biol16:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, I., Nuckolls, G.H., Takahashi, K., et al. (1998). Compressive force promotes sox 9, type II collagen and aggrecan and inhibits IL-1 beta expression resulting in chondrogenesis in mouse embryonic limb bud mesenchymal cells.J Cell Sci111:2067–2076.

    PubMed  CAS  Google Scholar 

  • Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator.Science251:1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Shan, W.S., Hendrickson, W.A., Colman, D.R., and Shapiro, L. (1998). Structure-function analysis of cell adhesion by neural (N-) cadherin.Neuron20:1153–1163.

    Article  PubMed  CAS  Google Scholar 

  • Terracio, L., Rubin, K., Gullberg, D., et al. (1991). Expression of collagen binding integrins during cardiac development and hypertrophy.Circ Res68:734–744.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R.P., Fitzharris, T.P., Denslow, S., and LeRoy, E.C. (1979). Collagen synthesis in the developing chick heart.Tex Rep Biol Med39:305–319.

    PubMed  CAS  Google Scholar 

  • Tucker, D.C. (1990) Genetic, neurohumoral, and hemodynamic influences on spontaneously hypertensive rat heart development in oculo.Hypertension15:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Tuckwell, D.S., and Humphries, M.J. (1997). A structure prediction for the ligand-binding region of the integrin 13 subunit: evidence for the presence of a von Willebrand factor A domain.FEBS Lett400:297–303.

    Article  PubMed  CAS  Google Scholar 

  • Turley, E.A., and Roth, S. (1979). Spontaneous glycosylation of glycosaminoglycan substrates by adherent fibroblasts.Cell17:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, S.C., Campbell, S. E., Reddy, H.K., Tjahja, E., and Voelker, D.J. (1996). Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts.Mol Cell Biochem155:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Uemura, T. (1998). The cadherin superfamily at the synapse: more members, more missions.Cell93:1095–1098.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with tryosine kinase activity.Cell61:203–212.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, W., Gish, G.D., Alves, F., and Pawson, T. (1997). The discoidin domain receptor tyrosine kinases are activated by collagen.Mol Cell1:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K.T., Jalil, J.E. Janicki, J.S., and Pick, R. (1989). Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. AmJ Hypertens2:931–940.

    PubMed  CAS  Google Scholar 

  • Werb, Z. (1997). ECM and cell surface proteolysis: regulating cellular ecology.Cell91:439–442.

    Article  PubMed  CAS  Google Scholar 

  • Yaeger, P.C., Masi, T.L., de Ortiz, J.L., Binette, F., Tubo, R., and McPherson, J.M. (1997). Synergistic action of transforming growth factor-beta and insulin-like growth factor-1 induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes.Exp Cell Res237:318–325.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Brown, K.E., and Yamada, K.M. (1995). Differential mRNA regulation of integrin subunits ow, 13,, Ăź, and135during mouse embryonic organogenesis.Cell Adhesion Commun3:311–325.

    Article  CAS  Google Scholar 

  • Yost, H.J. (1990). Inhibition of proteoglycan synthesis eliminates left-right assymetry inXenopus laeviscardiac looping.Development110:865–874.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldsmith, E.C., Carver, W., Borg, T.K. (2001). The Role of the Extracellular Matrix and Its Receptors in Modulating Cardiac Development. In: Tomanek, R.J., Runyan, R.B. (eds) Formation of the Heart and Its Regulation. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0207-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0207-3_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6662-4

  • Online ISBN: 978-1-4612-0207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics