Skip to main content

Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity

  • Chapter
Carleman Estimates and Applications to Uniqueness and Control Theory

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 46))

Abstract

The asymptotic behavior of the local energy and the poles of the resolvent (scattering poles) associated to the elasticity operator in the exterior of an arbitrary obstacle with Neumann or Dirichlet boundary conditions are considered. We prove that there exists an exponentially small neighborhood of the real axis free of resonances. Consequently we prove that for regular data, the energy decays at least as fast as the inverse of the logarithm of the time. According to Stephanov—Vodev ([17], [18]), our results are optimal in the case of a Neumann boundary condition, even when the obstacle is a ball of ℝ3.

The fundamental difference between our case and the case of the scalar laplacian (see Burq [1]) is that the phenomenon of Rayleigh waves is connected to the failure of the Lopatinskii condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. N. Burg, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1–29.

    Article  MathSciNet  Google Scholar 

  2. L. Hörmander, The Analysis of Linear Partial Differential Operators, I, II, Springer-Verlag, 1985.

    Google Scholar 

  3. N. Ikehata and G. Nakamura, Decaying and nondecaying properties of the local energy of an elastic wave outside an obstacle, Japan J. Appl. Math. 8 (1989), 83–95.

    Article  MathSciNet  Google Scholar 

  4. H. Iwashita and Y. Shibata, On the analyticity of spectral functions for exterior boundary value problems, Glas. Math. Ser. III 23(43) (1988), 291–313.

    MathSciNet  Google Scholar 

  5. M. Kawashita, On the local-energy decay property for the elastic wave equation with the Neumann boundary conditions, Duke Math. J. 67 (1992), 333–351.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Kawashita, On a region free from the poles of resolvent and decay rate of the local energy for the elastic wave equation, Indiana Univ. Math. J. 43 (1994), 1013–1043.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland, Amsterdam, 1979.

    Google Scholar 

  8. P.D. Lax and R.S. Phillips, Scattering Theory, New York, Academic Press, 1967.

    MATH  Google Scholar 

  9. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Part. Diff. Eq. 20 (1995), 335–356.

    MathSciNet  MATH  Google Scholar 

  10. G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bard, Duke Math. J. 86(3) (1997), 465–491.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.B. Melrose, Singularities and energy decay in acoustical scattering, Duke Math. J. 46 (1979), 43–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

    MATH  Google Scholar 

  13. R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems I, Comm Pure Appl. Math. 31 (1978), 593–617.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 28 (1975), 229–264.

    MathSciNet  MATH  Google Scholar 

  15. J.V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807–823.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Shibata and H. Soga, Scattering theory for the elastic wave equation, Publ. RIMS Kyoto Univ. 25 (1989), 861–887.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Stefanov and G. Vodev, Distribution of the resonances for the Neumann problem in linear elasticity in the exterior of a ball, Ann. Inst. H. Poincaré, Phys. Th. 60 (1994), 303–321.

    MathSciNet  MATH  Google Scholar 

  18. P. Stefanov and G. Vodev, Distribution of the resonances for the Neumann problem in linear elasticity outside a strictly convex body, Duke Math. J. 78(3) (1995), 677–714.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Stefanov and G. Vodev, Neumann resonances in linear elasticity for an arbitrary body, Comm. in Math. Phy. 176 (1996), 645–659.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl. 9(4), 75 (1996), 367–408.

    MathSciNet  MATH  Google Scholar 

  21. M. Taylor, Rayleigh waves in linear elasticity as a propagation of singularities phenomenon, in Proceedings of the Conference on Partial Equa. Geo.,Marcel Dekker, New York, 1979, pp. 273–291.

    Google Scholar 

  22. M. Taylor, Reflection of singularities of solution to systems of differential equations, Comm. Pure Appl. Math. 29 (1976), 1–38.

    MATH  Google Scholar 

  23. H. Walker, Some remarks on the local energy decay of solutions of the initial boundary value problem for the wave equation in unbounded domains, J. Diff. Eqs. 23 (1977), 459–471.

    Article  MATH  Google Scholar 

  24. K. Yamamoto, Singularities of solutions to the boundary value problems for elastic and Maxwell’s equations, Japan J. Math. 14(1), (1988), 119–163.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bellassoued, M. (2001). Carleman Estimate and Decay Rate of the Local Energy for the Neumann Problem of Elasticity. In: Colombini, F., Zuily, C. (eds) Carleman Estimates and Applications to Uniqueness and Control Theory. Progress in Nonlinear Differential Equations and Their Applications, vol 46. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0203-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0203-5_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6660-0

  • Online ISBN: 978-1-4612-0203-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics