Skip to main content

Manipulation of Myofibrillogenesis in Whole Hearts

  • Chapter
Myofibrillogenesis

Abstract

Potentially powerful tools for treatment of acquired and inherited diseases of the myocardium are the introduction of replacement genes or targeted disruption of diseased proteins. Direct intramuscular injection (Ascadi et al., 1991) and viral vectors (Dunckley et al., 1992) have been previously used for the transfer of functional cDNA constructs into muscle cells, but these are dependent on possible low expression or negative responses to the viral vector. A promising alternative to these methods that currently is being extensively studied is the use of cationic liposomes. Benefits of cationic liposomes include the ability to protect nucleic acids from degradation and the efficient delivery of tagged oligonucleotides to the nucleus (Zelphati and Szoka, 1996). In this chapter, we describe different strategies for using cationic liposomes to analyze cardiac myofibril organization and formation in whole intact hearts. Results from these applications have yielded valuable information on myofibril initiation and segmental heart development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ascadi, G., Dickson, G., Love, D.R., Jani, A., Walsh, F.S., Gurusinghe, A., Wolff, J.A., and Davies, K.E. 1991. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352:815–818.

    Article  Google Scholar 

  • Bailey, K. 1948. Tropomyosin: A new asymmetric protein component of the muscle fibril. Biochem. J. 43:271.

    PubMed  CAS  Google Scholar 

  • Bonne, G., Carrier, L., Richard, P., Hainque, B., and Schwartz, K. 1998. Familial hypertrophic cardiomyopathy: from mutations to functional defects. Circ. Res. 83:580–593.

    Article  PubMed  CAS  Google Scholar 

  • Bottinelli, R., Coviello, D.A., Redwood, C.S., Pellegrino, M.A., Maron, B.J., Spirito, P., Watkins, H., and Reggiani, C. 1998. A mutant tropomyosin that causes hypertrophic cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ. Res. 82:106–115.

    Article  PubMed  CAS  Google Scholar 

  • Bulteau, L., Raymond, G., and Cognard, C. 1998. Antisense oligonucleotides against “cardiac” and “skeletal” DHP-receptors reveal a dual role for the “skeletal” isoform in EC coupling of skeletal muscle cells in primary culture. J. Cell Sci. 111:2149–2158.

    PubMed  CAS  Google Scholar 

  • Coviello, D.A., Maron, B.J.M., Spirito, P., Watkins, H., Vosberg, H.P., Thierfelder, L., Schoen, F.J., Seidman, J.G., and Seidman, C.E. 1997. Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. J. Am. Coll. Cardiol. 29:635–640.

    Article  PubMed  CAS  Google Scholar 

  • Dabiri, G.A., Turnacioglu, K.T., Sanger, J.M., and Sanger, J.W. 1997. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc. Natl. Acad. Sci. USA 94:9493–9498.

    Article  PubMed  CAS  Google Scholar 

  • Debs, R.J., Freedman, L.P., Edmunds, S., Gaensler, K.L., Duzgunes, N., and Yamamoto, K.R. 1990. Regulation of gene expression in vivo by liposome-mediated delivery of a purified transcription factor. J. Biol. Chem. 265:10189–10192.

    PubMed  CAS  Google Scholar 

  • Erginel-Unaltuna, N., Dube, D.K., Robertson, D.R., and Lemanski, L.F. 1995. In vivo protein synthesis in developing hearts of normal and cardiac mutant axolotls, Ambystoma mexicanum. Cell. Mol. Biol. Res. 41:181–187.

    CAS  Google Scholar 

  • Greaser, M.L., Handel, S.E., Wang, S.-M., Schultz, E., Bulinski, J.C., Lin, J.J.-C., and Lessard, J.L. 1989. Assembly of titin, myosin, actin, and tropomyosin into myofibrils in cultured chick cardiomyocytes. In: Cellular and Molecular Biology of Muscle Development, Eds. L.H. Kedes and F.E. Stockdale, Alan R. Liss, New York, pp. 247–257.

    Google Scholar 

  • Grepin, C., Nemer, G., and Nemer, M. 1997. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 124:2387–2395.

    PubMed  CAS  Google Scholar 

  • Humphrey, R.R. 1968. A genetically determined absence of heart function in embryos of the Mexican axolotl (Ambystoma mexicanum). Anat. Rec. 162:475.

    Google Scholar 

  • Humphrey, R.R. 1972. Genetic and experimental studies on a mutant gene (c) determining absence of heart action in embryos of the Mexican axolotl (Ambystoma mexicanum). Dev. Biol. 27:365–375.

    Article  PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida, K., Danoski, B.A., Sanger, J.M., and Sanger, J.W. 1996. Living adult rat cardiomyocytes in culture: evidence for dissociation of costameric distribution of vinculin from costameric distributions of attachments. Cell Motil. Cytoskel. 33:263–275.

    Article  CAS  Google Scholar 

  • Jiao, S., Williams, P., Berg, R.K., Hodgeman, B.A., Liu, L., Repetto, G., and Wolff, J.A. 1992. Direct gene transfer into nonhuman primate myofibers in vivo. Hum. Gene Ther. 3:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Lemanski, L. 1973. Morphology of developing heart in cardiac lethal mutant Mexican axolotl, Ambystoma mexicanum. Dev. Biol, 33:312–333.

    Article  CAS  Google Scholar 

  • Lemanski, L.F., LaFrance, S.M., Erigent-Unaltuna, N., Luque, E.A., Ward, S.M., Fransen, M.E., Mangiacapar, F.J., Nakatsugawa, M., Lemanski, S.L., Capone, R.B., Goggins, K.J., Nash, B.P., Bhatia, R., Dube, A., Gaur, A., Zajdel, R.W., Zhu, Y., Spinner, B.J., Pietras, K.M., Lemanski, S.F., Kovacs, C.V., and Dube, D.K. 1995. The cardiac mutant gene c in Axolotls: Cellular, developmental, and molecular studies. Cell. Mol. Biol. Res. 41:293–305.

    PubMed  CAS  Google Scholar 

  • Lin, M.-F., DaVolio, J., and Garcis, R. 1993. Cationic liposome-mediated incorporation of prostatic acid phosphatase protein into human prostate carcinoma cells. Biochem. Biophys. Res. Commun. 192:413–419.

    Article  PubMed  CAS  Google Scholar 

  • LoRusso, S.M., Rhee, D., Sanger, J.M., and Sanger, J.W. 1997. Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil. Cytoskel. 37:183–198.

    Article  CAS  Google Scholar 

  • Luque, E.A., Spinner, B.J., Dube, S., Dube, D.K., and Lemanski, L.F. 1997. Differential expression of a novel isoform of alpha-tropomyosin in cardiac and skeletal muscle of the Mexican axolotl (Ambystoma mexicanum). Gene 185:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Markwald, R.R., Trusk, T., and Moreno-Rodriquez, R. 1998. Formation and septation of the tubular heart: integrating the dynamics of morphology with emerging molecular concepts. In: Living Morphogenesis of the Heart, Eds. M.V. De la Cruz and R.R. Markwald, Birkhauser, Boston.

    Google Scholar 

  • Moore, P.B. and Lemanski, L.F. 1982. Quantitation of tropomyosin by radioimmunoassay in developing hearts of cardiac mutant axolotls, Ambystoma mexicanum. J. Muscle Res. Cell Motil. 3:161–167.

    Article  CAS  Google Scholar 

  • Prentice, H., Kloner, R.A., Prigozy, T., Christensen, T., Newman, L., Li, Y, and Kedes, L. 1994. Tissue-restricted gene expression assayed by direct DNA injection into cardiac and skeletal muscle. J. Mol. Cell. Cardiol. 26:1393–1401.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, D., Sanger, J.M., and Sanger, J.W. 1994. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil. Cytoskel. 28:1–24.

    Article  CAS  Google Scholar 

  • Romano, L.A. and Runyan, R.B. 1999. Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Dev. Biol. 212:243–254.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, J.W., Mittal, B., and Sanger, J.M. 1984. Formation of myofibrils in spreading chick cardiac myocytes. Cell Motil. Cytoskel. 4:405–416.

    Article  CAS  Google Scholar 

  • Spinner, B.J., Zajdel, R.W., Mehta, S., Choudhury, A., Lemanski, L.F., and Dube, D.K. 2000. A novel isoform of alpha-tropomyosin, ATmC-2, is essential for structure and function in the Mexican axolotl. (submitted).

    Google Scholar 

  • Starr, C., Diaz, J.G., and Lemanski, L.F. 1989. Analysis of actin and tropomyosin in hearts of cardiac mutant axolotls by two-dimensional gel electrophoresis, western blots, and immunofluorescent microscopy. J. Morphol. 210:1–10.

    Article  Google Scholar 

  • Theirfelder, L.H., Watkins, C., MacRae, C., Lamas, R., McKenna, W., Vosberg, H.-P., Seidman, J.G., and Seidman, C.E. 1994. Alpha-tropomyosin and cardiac troponin-T mutations cause familial hypertrophic cardiomyopathy: disease of the sarcomere. Cell 77:701–712.

    Article  Google Scholar 

  • Wang, S.-M., Wang, S.-H., Lin, J.L.-C., and Lin, J.J.-C. 1990. Striated muscle tropomyosinenriched microfilaments of developing muscles of chicken embryos. J. Muscle Res. Cell Motil. 11:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D.Z., Reiter, R.S., Lin, J.L., Wang, Q., Williams, H.S., Krob, S.L., Schultheiss, T.M., Evans, S., and Lin, J.J. 1999. Requirement of a novel gene, Xin, in cardiac morphogenesis. Development 126:1281–1294.

    PubMed  CAS  Google Scholar 

  • Wehland, J. and Weber, K. 1980. Distribution of fluorescently labeled actin and tropomyosin after microinjection in living tissue culture cells as observed with TV image intensification. Exp. Cell Res. 127:397–408.

    Article  PubMed  CAS  Google Scholar 

  • Zajdel, R.W., McLean, M.D., Lemanski, S.L., Muthuchamy, M., Wieczorek, D.F., Lemanski, L.F., and Dube, D.K. 1998. Ectopic expression of tropomyosin promotes myofibrillogenesis in mutant axolotl hearts. Dev. Dyn. 213:412–420.

    Article  PubMed  CAS  Google Scholar 

  • Zajdel, R.W., Dube, D.K., and Lemanski, L.F. 1999. The cardiac mutant Mexican axolotl is a unique animal model for evaluation of cardiac myofibrillogenesis. Exp. Cell Res. 248:557–566.

    Article  PubMed  CAS  Google Scholar 

  • Zajdel, R.W., McLean, M.D., Muthuchamy, M., Mehta, S., Lemanski, L.F., Wieczorek, D.F., and Dube, D.K. 2000a. Mutation of Asprtic acid15 of alpha-tropomyosin prohibits myofibril formation in the mutant axolotl heart. (submitted).

    Google Scholar 

  • Zajdel, R.W., Choudhury, A., McLean, M.D., Spinner, B.J., Mehta, S., and Dube, D.K. 2000b. Differential expression of tropomyosin isoforms during development of the conus and ventricle (submitted).

    Google Scholar 

  • Zelphati, O. and Szoka, Jr., F.C. 1996. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493–11498.

    Article  PubMed  CAS  Google Scholar 

  • Zelphati, O., Uyechi, L.S., Barron, L.G., and Szoka, Jr., F.C. 1998. Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim. Biophys. Acta 1390:119–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zajdel, R.W., McLean, M.D., Denz, C.R., Dube, S., Lemanski, L.F., Dube, D.K. (2002). Manipulation of Myofibrillogenesis in Whole Hearts. In: Dube, D.K. (eds) Myofibrillogenesis. Cardiovascular Molecular Morphogenesis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0199-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0199-1_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6658-7

  • Online ISBN: 978-1-4612-0199-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics