Tropomodulin: An Important Player in Cardiac Myofibrillogenesis

  • Catherine McLellan
  • Carol C. Gregorio
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Tropomodulin has been studied intensively since it was first reported in 1987 as a tropomyosin binding protein associated with the erythrocyte membrane skeleton (Fowler, 1987). The study of tropomodulin’s role in heart myofibrillogenesis was initiated after the discovery that in mature skeletal muscle tropomodulin was localized to the pointed (slow-growing) ends of the thin filaments (Fowler et al., 1993). Subsequent in vitro studies demonstrated that tropomodulin is a potent actin filament pointed-end capping protein, functioning to prevent actin filaments from elongating or shrinking (Weber et al., 1994). The results of the studies that will be discussed here demonstrate that tropomodulin plays a critical role in maintaining the length of thin filaments within sarcomeres, in the physiologic function (contractile activity) of cardiac myocytes, and in the organogenesis of the heart. Investigations on the properties of this molecule continue to provide new insights into cytoskeletal protein dynamics.


Actin Filament Cardiac Myocytes Thin Filament Filament Length Lens Fiber Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almenar-Queralt, A., Gregorio, C.C., and Fowler, V.M. 1999a. Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J. Cell Sci. 112:1111–1123.Google Scholar
  2. Almenar-Queralt, A., Lee, A., Conley, C.A., Ribas de-Pouplana, L., and Fowler, V.M. 1999b. Identification of a novel tropomodulin isoform, Sk-Tmod, that caps actin filament pointed ends in fast skeletal muscle. J. BioL Chem. 274:28466–28475.CrossRefGoogle Scholar
  3. Babcock, G.G. and Fowler, V.M. 1994. Isoform-specific interactions of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J. Biol. Chem. 269:27510–27418.PubMedGoogle Scholar
  4. Broschat, K.O. 1990. Tropomyosin prevents depolymerization of actin filaments from the pointed end. J. BioL Chem. 265:21323–21329.PubMedGoogle Scholar
  5. Chu, X., Chen, J., Chien, K.R., Vera, C., and Sung, L.A. 1999a. Tropomodulin-null mutation arrests heart development, vasculogenesis, and hematopoiesis during embryogenesis. Mol. Biol. Cell 10:153a.Google Scholar
  6. Chu, X., Thomson, D., Yee, L.J., and Sung, L.A. 1999b. Exon-intron organization of the mouse and human tropomodulin genes. Mol. Biol. Cell 10:92a.Google Scholar
  7. Conley, C.A. and Fowler, V.M. 1999. Localization of the human 64 kD autoantigen D1 to myofibrils in a subset of extraocular muscle fibers. Curr. Eye Res. 19:313–322.PubMedCrossRefGoogle Scholar
  8. Cox, P.R. and Zoghbi, H.Y. 2000. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 63:97–107.PubMedCrossRefGoogle Scholar
  9. Craig, S.W. and Pardo, J.V. 1983. Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil. 3:449–462.PubMedCrossRefGoogle Scholar
  10. Dong, Q., Ludgate, M., and Vassart, G. 1991. Cloning and sequencing of a novel 64-kDa autoantigen recognized by patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 72:1375–1381.PubMedCrossRefGoogle Scholar
  11. Epstein, H.F. and Fischman, D.A. 1991. Molecular analysis of protein assembly in muscle development. Science 251:1039–1044.PubMedCrossRefGoogle Scholar
  12. Fischer, R.S., Lee, A., and Fowler, V.M. 2000. Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro. Invest. Ophthalmol. Vis. Sci. 41:166–174.PubMedGoogle Scholar
  13. Fowler, V.M. 1987. Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J. Biol. Chem. 262:12792–12800.PubMedGoogle Scholar
  14. Fowler, V.M. 1990. Tropomodulin: A cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J. Cell Biol. 111:471–482.PubMedCrossRefGoogle Scholar
  15. Fowler, V.M. and Conley, C.A. 1999. Tropomodulin. In: Guidebook to the Cytoskeletal and Motor Proteins,2nd edition. Eds. T.E. Kreis and R.D. Vale. Oxford University Press, Oxford, U.K. pp. 154–159.Google Scholar
  16. Fowler, V.M., Sussman, M.A., Miller, P.G., Flucher, B.E., and Daniels, M.P. 1993. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120:411–420.PubMedCrossRefGoogle Scholar
  17. Fulton, A.B. and Alftine, C. 1997. Organization of protein and mRNA for titin and other myofibril components during myofibrillogenesis in cultured chicken skeletal muscle. Cell Struct. Funct. 22:51–58.PubMedCrossRefGoogle Scholar
  18. Goll, D.E., Suzuki, A., Temple, J., and Holmes, G.R. 1972. Studies on purified a-actinin. I. Effect of temperature and tropomyosin on the a-actinin/F-actin interaction. J. Mol. Biol. 67:469–488.CrossRefGoogle Scholar
  19. Gregorio, C.C. 1997. Models of thin filament assembly in cardiac and skeletal muscle. Cell Struct. Funct. 22:191–195.PubMedCrossRefGoogle Scholar
  20. Gregorio, C.C. and Antin, P.B. 2000. At the heart of myofibril assembly. 10:355–362.Google Scholar
  21. Gregorio, C.C. and Fowler, V.M. 1995. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J. Cell Biol. 129:683–695.PubMedCrossRefGoogle Scholar
  22. Gregorio, C.C. and Fowler, V.M. 1996. Tropomodulin function and thin filament assembly in cardiac myocytes. Trends Cardiovasc. Med. 6:136–141.PubMedCrossRefGoogle Scholar
  23. Gregorio, C.C., Weber, A., Bondad, M., Pennise, C.R., and Fowler, V.M. 1995. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377:83–86.PubMedCrossRefGoogle Scholar
  24. Ito, M., Swanson, B., Sussman, M.A., Kedes, L., and Lyons, G. 1995. Cloning of tropomodulin cDNA and localization of gene transcripts during mouse embryogenesis. Dev. Biol. 167:317–328.PubMedCrossRefGoogle Scholar
  25. Krajinovic, M., Pinamonti, B., Sinagra, G., Vatta, M., Severini, G.M., Milasin, J., Falaschi, A., Camerini, F., and Giacci, M. 1995. Linkage of familial dilated cardiomyopathy to chromosome 9. Am. J. Hum. Genetics 57:846–852.Google Scholar
  26. Lee, A., Fischer, R.S., and Fowler, V.M. 2000. Stabilization and remodeling of the membrane skeleton during lens fiber cell differentiation and maturation. Dev. Dyn. 217:257–270.PubMedCrossRefGoogle Scholar
  27. Littlefield, R. and Fowler, V.M. 1998. Defining actin filament length in striated muscle: rulers and caps or dynamic stability. Annu. Rev. Cell Dev. Biol. 14:487–525.PubMedCrossRefGoogle Scholar
  28. Ohtsuki, I. 1979. Molecular arrangement of troponin-T in the thin filament. J. Biochem. 85:1377–1378.PubMedGoogle Scholar
  29. Robinson, T.F. and Winegrad, S. 1979. The measurement and dynamic implications of thin filament lengths in heart muscle. J. Physiol. 286:607–619.PubMedGoogle Scholar
  30. Ruzicka, D. and Schwartz, R.J. 1988. Sequential activation of a-actin genes during avian cardiogenesis: vascular smooth muscle a-actin gene transcripts mark the onset of cardiomyocyte differentiation. J. Cell Biol. 107:2575–2586.PubMedCrossRefGoogle Scholar
  31. Schafer, D.A., Waddle, J.A., and Cooper, J.A. 1993. Localization of CapZ during myofibrillogenesis in cultured chicken muscle. Cell Motil. Cytoskel. 25:317–335.CrossRefGoogle Scholar
  32. Sung, L.A., Fan, Y.S., and Lin, C.C. 1996. Gene assignment, expression, and homology of human tropomodulin. Genomics 34:92–96.PubMedCrossRefGoogle Scholar
  33. Sung, L.A., Fowler, V.M., Lambert, K., Sussman, M.A., Karr, D., and Chien, S. 1992. Molecular cloning and characterization of human fetal liver tropomodulin. A tropomyosinbinding protein. J. Biol. Chem. 267:2616–2621.PubMedGoogle Scholar
  34. Sussman, M.A., Baque, S., Uhm, C.S., Daniels, M.P., Price, R.L., Simpson, D., Terracio, L., and Kedes, L. 1997. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ. Res. 82:94–105.CrossRefGoogle Scholar
  35. Sussman, M.A., Lim, H.W., Gude, N., Taigen, T., Olson, E.N., Robbins, J., Colbert, M.C., Gualberto, A., Wieczorek, D.F., and Molkentin, J.D. 1998a. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693.CrossRefGoogle Scholar
  36. Sussman, M.A., McAvoy, J.W., Rudisill, M., Swanson, B., Lyons, G.E., Kedes, L., and Blanks, J. 1996. Lens tropomodulin: developmental expression during differentiation. Exp. Eye Res. 63:223–232.PubMedCrossRefGoogle Scholar
  37. Sussman, M.A., Sakhi, S., Barrientos, P., Ito, M., and Kedes, L. 1994a. Tropomodulin in rat cardiac muscle: localization of protein is independent of messenger RNA distribution during myofibrillar development. Circ. Res. 75:221–232.CrossRefGoogle Scholar
  38. Sussman, M.A., Sakhi, S., Tocco, G., Najm, I., Baudry, M., Kedes, L., and Schreiber, S.S. 1994b. Neural tropomodulin: developmental expression and effect of seizure activity. Dev. Brain Res. 80:45–53.CrossRefGoogle Scholar
  39. Sussman, M.A., Welch, S., Cambon, N., Klevitsky, R., Hewett, T.E., Price, R., Witt, S.A., and Kimball, T.R. 1998b. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J. Clin. Invest. 101:51–61.CrossRefGoogle Scholar
  40. Sussman, M.A., Welch, S., Gude, N., Khoury, P.R., Daniels, S.R., Kirkpatrick, D., Walsh, R.A., Price, R.L., Lim, H.W., and Molkentin, J.D. 1999. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice. Am. J. Pathol. 155:2101–2113.PubMedCrossRefGoogle Scholar
  41. Sussman, M.A., Welch, S., Walker, A., Klevitsky, R., Hewett, T.E., Witt, S.A., Kimball, T.R., Price, R., Lim, H.W., and Molkentin, J.D. 2000. Hypertrophic defect unmasked by calcineurin expression in asymptomatic tropomodulin overexpressing transgenic mice. Cardiovasc. Res. 46:90–101.PubMedCrossRefGoogle Scholar
  42. Vera, C., Sood, A., Gao, K.-M., Yee, L.J., Lin, J.J.-C., and Sung, L.A. 2000. Tropomodulinbinding site mapped to residues 7 to 14 at the N-terminal heptad repeats of tropomyosin isoform 5. Arch. Biochem. Biophys. 378:16–24.PubMedCrossRefGoogle Scholar
  43. Watakabe, A., Kobayashi, R., and Helfman, D.M. 1996. N-tropomodulin: a novel isoform of tropomodulin identified as the major binding protein to brain tropomyosin. J. Cell Sci. 109:2299–2310.PubMedGoogle Scholar
  44. Weber, A. 1999. Actin binding proteins that change extent and rate of actin monomer-polymer distribution by different mechanisms. Mol. Cell. Biochem. 190:67–74.PubMedCrossRefGoogle Scholar
  45. Weber, A. and Murray, J.M. 1973. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53:612–673.PubMedGoogle Scholar
  46. Weber, A., Pennise, C.C., Babcock, G.G., and Fowler, V.M. 1994. Tropomodulin caps the pointed ends of actin filaments. J. Cell Biol. 127:1627–1635.PubMedCrossRefGoogle Scholar
  47. Weber, A., Pennise, C.R., and Fowler, V.M. 1999. Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADP.P(i)-actin to ADP-actin at all pointed filament ends. J. Biol. Chem. 274:34637–34645.PubMedCrossRefGoogle Scholar
  48. Wegner, A. 1979. Equilibrium of the actin-tropomyosin interaction. J. Mol. Biol. 131:839–853.PubMedCrossRefGoogle Scholar
  49. Woo, M.K. and Fowler, V.M. 1994. Identification and characterization of tropomodulin and tropomyosin in the adult rat lens. J. Cell Sci. 107:1359–1367.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Catherine McLellan
  • Carol C. Gregorio

There are no affiliations available

Personalised recommendations