Cardiomyopathies and Myofibril Abnormalities

  • Jeffrey A. Towbin
  • Neil E. Bowles
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Cardiomyopathies are primary disorders of the myocardium in which systolic and/or diastolic dysfunction occurs (Towbin, 1993, 1999). These cardiac muscle diseases are classified based on phenotypic features (Towbin, 1993, 1999; Richardson et al., 1996) and include: (1) dilated cardiomyopathy (DCM), (2) hypertrophic cardiomyopathy (HCM), (3) restrictive cardiomyopathy (RCM), and (4) arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/ARVC). Since the early 1990s, molecular insight into these disorders has emerged and, based on the genotype—phenotype correlations, we have suggested a unifying hypothesis called the “final common pathway” hypothesis (Towbin et al., 1999a,b; Bowles et al., 2000). In this chapter, we will describe the clinical features of these myocardial disorders, outline the current understanding of the molecular basis of these diseases, and discuss the final common pathways of each of these tragic disorders, including the effect on the myofibril in each case.


Muscular Dystrophy Dilate Cardiomyopathy Duchenne Muscular Dystrophy Hypertrophic Cardiomyopathy Dystrophin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, F., Li, D., Karibe, A., Gonzalez, O., Tapscott, T., Hill, R., Weilbaecher, D., Blackie, P., Furey, M., Gardner, M., Bachinski, L.L., and Roberts, R. 1998. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation 98:2791–2795.PubMedCrossRefGoogle Scholar
  2. Araishi, K., Sasaoka, T., Imamura, M., Noguchi, S., Hama, H., Wakabayashi, E., Yoshida, M., Hori, T., and Ozawa, E. 1999. Loss of the sarcoglycan complex and sarcospan leads to muscular dystrophy in beta-sarcoglycan-deficient mice. Hum. Mol. Genetics 8:1589–1598.CrossRefGoogle Scholar
  3. Arber, S., Hunter, J.J., Ross, J., Jr., Hongo, M., Sansig, G., Borg, J., Perriard, J.C., Chien, K.R., and Caroni, P. 1997. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88:393–403.PubMedCrossRefGoogle Scholar
  4. Arbustini, E., Morbini, P., Grasso, M., Fasani, R., Verga, L., Bellini, O., Dal Bello, B., Campana, C., Piccolo, G., Febo, O., Opasich, C., Gavazzi, A., and Ferrans, V.J. 1998. Restrictive cardiomyopathy, atrioventricular block and mild to subclinical myopathy in patients with desmin-immunoreactive material deposits. J. Am. Coll. Cardiol. 31:645–653.PubMedCrossRefGoogle Scholar
  5. Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. 1999. Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med. 5:320–326.PubMedCrossRefGoogle Scholar
  6. Baig, M.K., Goldman, J.H., Caforio, A.L.P., Coonar, A.S., Keeling, P.J., and McKenna, W.J. 1998. Familial dilated cardiomyopathy: Cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J. Am. Coll. Cardiol. 31:195–201.PubMedCrossRefGoogle Scholar
  7. Barth, P.G., Scholte, H.R., Berden, J.A., Van der Klei-Van Moorsel, J.M., Luyt-Houwen, I.E., Van ‘t Veer-Korthof, E.T., Van der Harten, J.J., and Sobotka-Plojhar, M.A. 1983. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 62:327–355.PubMedCrossRefGoogle Scholar
  8. Berko, B.A. and Swift, M. 1987. X-linked dilated cardiomyopathy. N. Engl. J. Med. 316:1186–1191.PubMedCrossRefGoogle Scholar
  9. Bione, S., D’Adamo, P., Maestrini, E., Gedeon, A.K., Bolhuis, P.A., and Toniolo, D. 1996. A novel X-linked gene, G4.5, is responsible for Barth syndrome. Nat. Genetics 12:385–389.CrossRefGoogle Scholar
  10. Bione, S., Maestrini, E., Rivella, S., Mancini, M., Regis, S., Romeo, G., and Toniolo, D. 1994. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genetics 8:323–327.CrossRefGoogle Scholar
  11. Bleyl, S.B., Mumford, B.R., Thompson, V., Carey, J.C., Pysher, T.J., Chin, T.K., and Ward, K. 1997. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genetics 61:868–872.CrossRefGoogle Scholar
  12. Bonne, G., Carrier, L., Bercovici, J., Cruaud, C., Richard, P., Hainque, B., Gautel, M., Labeit, S., James, M., and Beckmann, J. 1995. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat. Genetics 11:438–440.CrossRefGoogle Scholar
  13. Bonne, G., Carrier, L., Richard, P., Hainque, B., and Schwartz, K. 1998. Familial hypertrophic cardiomyopathy from mutations to functional defects. Circ. Res. 83:380–593.CrossRefGoogle Scholar
  14. Bonne, G., DiBarletta, M.R., Varnous, S., Becane, H.M., Hammouda, E.H., Merlini, L., Muntoni, F., Greenberg, C.R., Gary, F., Urtizberea, J.A., and Schwartz, K. 1999. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genetics 21:285–288.CrossRefGoogle Scholar
  15. Bowles, K.R., Gajarski, R., Porter, P., Goytia, V., Bachinski, L., Roberts, R., Pignatelli, R., and Towbin, J.A. 1996. Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10g21–23. J. Clin. Invest. 98:1355–1360.PubMedCrossRefGoogle Scholar
  16. Bowles, N.E., Bowles, K.R., and Towbin, J.A. 2000. The “final common pathway” hypothesis and inherited cardiovascular disease: the role of cytoskeletal proteins in dilated cardiomyopathy. Herz 25:168–175.PubMedCrossRefGoogle Scholar
  17. Brodsky, G.L., Muntoni, F., Miocic, S., Sinagra, G., Sewry, C., and Mestroni, L. 2000. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101:473–476.PubMedCrossRefGoogle Scholar
  18. Campbell, K.P. 1995. Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell 80:675–679.PubMedCrossRefGoogle Scholar
  19. Carrier, L., Bonne, G., Bahrend, E., Yu, B., Richard, P., Niel, F., Hainque, B., Cruaud, C., Gary, F., Labeit, S., Bouhour, J.B., Dubourg, O., Desnos, M., Hagege, A.A., Trent, R.J., Komajda, M., Fiszman, M., and Schwartz, K. 1997. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ. Res. 80:427–434.PubMedGoogle Scholar
  20. Carrier, L., Hengstenberg, C., Beckmann, J.S., Guicheney, P., Dufour, C., Bercovici, J., Dausse, E., Berebbi-Bertrand, I., Wisnewsky, C., and Pulvenis, D. 1993. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat. Genetics 4:311–313.CrossRefGoogle Scholar
  21. Chang, W.J., Iannaccone, S.T., Lau, K.S., Masters, B.S., McCabe, T.J., McMillan, K., Padre, R.C., Spencer, M.J., Tidball, J.G., and Stull, J.T. 1996. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc. Natl. Acad. Sci. USA 93:9142–9147.PubMedCrossRefGoogle Scholar
  22. Charron, P., Dubourg, O., Desnos, M., Bennaceur, M., Carrier, L., Camproux, A.C., Isnard, R., Hagege, A., Langlard, J.M., Bonne, G., Richard, P., Hainque, B., Bouhour, J.B., Schwartz, K., and Komajda, M. 1998. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to cardiac myosin binding protein C gene. Circulation 97:2230–2236.PubMedCrossRefGoogle Scholar
  23. Chin, T.K., Perloff, J.K., and Williams, R.G. 1990. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82:507–513.PubMedCrossRefGoogle Scholar
  24. Coonar, A.S., Protonotarios, N., Tsatsopoulou, A., Needham, E.W.A., Houlston, R.S., Cliff, S., Otter, M.I., Murday, V.A., Mattu, R.K., and McKenna, W.J. 1998. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and wooly hair (Naxos disease) maps to 17g21. Circulation 97:2049–2058.PubMedCrossRefGoogle Scholar
  25. Coral-Vazquez, R., Cohn, R.D., Moore, S.A., Hill, J.A., Weiss, R.M., Davisson, R.L., Straub, V., Barresi, R., Bansal, D., Hrstka, R.F., Williamson, R., and Campbell, K.P. 1999. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: A novel mechanism for cardiomyopathy and muscular dystrophy. Cell 98:465–474.PubMedCrossRefGoogle Scholar
  26. Corrado, D., Basso, C., Thiene, G., McKenna, W.J., Davies, M.J., Fontaliran, F., Nava, A., Silvestri, F., Blomstrom-Lundquist, C., Wlodarska, E.K., Fontaine, G., and Camerini, F. 1997. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: A multicenter study. J. Am. Coll. Cardiol. 30:1512–1520.PubMedCrossRefGoogle Scholar
  27. Corrado, D., Fontaine, G., Marcus, F.I., McKenna, W.J., Nava, A., Thiene, G., and Wichter, T. 2000. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: Need for an international registry. J. Cardiovasc. Electrophysiol. 11:827–832.PubMedCrossRefGoogle Scholar
  28. Cox, G.F. and Kunkel, L.M. 1997. Dystrophies and heart disease. Curr. Opin. Cardiol. 12:329–343.PubMedCrossRefGoogle Scholar
  29. D’Adamo, P., Fassone, L., Gedeon, A., Janssen, E.A., Bione, S., Bolhuis, P.A., Barth, P.G., Wilson, M., Haan, E., Orstavik, K.H., Patton, M.A., Green, A.J., Zammarchi, E., Donati, M.A., and Toniolo, D. 1997. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genetics 61:862–867.CrossRefGoogle Scholar
  30. Dalakas, M.C., Park, K.-Y., Semino-Mora, C., Lee, H.S., Sivakumar, K., and Goldfarb, L.G. 2000. Desmin myopathy: a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N. Engl. J. Med. 342:770–780.PubMedCrossRefGoogle Scholar
  31. Durand, J.B., Bachinski, L.L., Bieling, L., Czernuszewicz, G.Z., Abchee, A.B., Yu, Q.T., Tapscott, T., Hill, R., Ifegwu, J., and Marian, A.J. 1995. Localization of a gene responsible for familial dilated cardiomyopathy to chromosome 1q32. Circulation 92:3387–3389.PubMedCrossRefGoogle Scholar
  32. Emery, A.E.H. 1987. X-linked muscular dystrophy with early contractures and cardiomyopathy (Emery-Dreifuss type). Clin. Genetics 32:360–367.CrossRefGoogle Scholar
  33. Fadic, R., Sunada, Y., Walclawik, A.J., Buck, S., Lewandoski, P.J., Campbell, K.P., and Lotz, B.P. 1996. Brief report: Deficiency of a dystrophin-associated glycoprotein (adhalin) in a patient with muscular dystrophy and cardiomyopathy. N. Engl. J. Med. 334:362–366.PubMedCrossRefGoogle Scholar
  34. Farza, H., Townsend, P.J., Carrier, L., Carrier, L., Barton, P.J., Mesnard, L., Bahrend, E., Forissier, J.F., Fiszman, M., Yacoub, M.H., and Schwartz, K. 1998. Genomic organization, alternative splicing and polymorphisme of the human cardiac troponin T gene. J. Mol. Cell. Cardiol. 30:1247–1253.PubMedCrossRefGoogle Scholar
  35. Fatkin, D., Christe, M.E., Aristizabal, O., McConnell, B.K., Srinivasan, S., Schoen, F.J., Seidman, C.E., Turnball, D.H., and Seidman, J.G. 1999. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutant in the a-cardiac myosin heavy chain gene. J. Clin. Invest. 103:147–153.PubMedCrossRefGoogle Scholar
  36. Ferlini, A., Galie, N., Merlini, L., Sewry, C., Branzi, A., and Muntoni, E. 1998. A novel Alu-like element rearranged in the dystrophin gene causes a splicing mutation in a family with X-linked dilated cardiomyopathy. Am. J. Hum. Genetics 63:436–460.CrossRefGoogle Scholar
  37. Forissier, J.F., Carrier, L., Farza, H., Bonne, G., Bercovici, J., Richard, P., Hainque, B., Townsend, P.J., Yacoub, M.H., Faure, S., Dubourg, O., Millaire, A., Hagege, A.A., Desnos, M., Komajda, M., and Schwartz, K. 1996. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation 94:3069–3073.PubMedCrossRefGoogle Scholar
  38. Fougerousse, F., Delezoide, A.L., Fiszman, M.Y., Schwartz, K., Beckman, J.S., and Carrier, L. 1998. Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development. Circ. Res. 82:130–133.PubMedCrossRefGoogle Scholar
  39. Franz, W.M., Cremer, M., and Hermann, R. 1995. X-linked dilated cardiomyopathy: Novel mutation of the dystrophin gene. Ann. NY Acad. Sci. 751:470–491.CrossRefGoogle Scholar
  40. Franz, W.-M., Muller, M., Muller, A.J., Herrmann, R., Rothmann, T., Cremer, M., Cohn, R.D., Voit, T., and Katus, H.A. 2000. Association of nonsense mutation of dystrophin gene with disruption of sarcoglycan complex in X-linked dilated cardiomyopathy. Lancet 355:1781–1785.PubMedCrossRefGoogle Scholar
  41. Friedman, R.A., Moak, J.P., and Garson, A., Jr. 1991. Clinical course of idiopathic dilated cardiomyopathy in children. J. Am. Coll. Cardiol. 18:152–156.PubMedCrossRefGoogle Scholar
  42. Gautel, M., Fürst, D.O., Cocco, A., and Schiaffino, S. 1998. Isoform transitions of the myosin-binding protein C family in developing human and mouse muscles. Lack of isoform transcomplementation in cardiac muscle. Circ. Res. 82:124–129.PubMedCrossRefGoogle Scholar
  43. Gautel, M., Zuffardi, O., Freiburg, A., and Labeit, S. 1995. Phosphorylation switches specific for the cardiac isoform of myosin binding protein C: a modulator of cardiac contraction? EMBO J. 14:1952–1960.PubMedGoogle Scholar
  44. Geisterfer-Lowrance, A.A., Christie, M., and Conner, D.A. 1996. A mouse model of familial hypertrophic cardiomyopathy. Science 272:731–734.PubMedCrossRefGoogle Scholar
  45. Geisterfer-Lowrance, A.A., Kass, S., Tanigawa, G., Vosberg, H.P., McKenna, W., Seidman, C.E., and Seidman, J.G. 1990. A molecular basis for familial hypertrophie cardiomyopathy 13-cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006.PubMedCrossRefGoogle Scholar
  46. Goldfarb, L.G., Park, K.-Y., Cervenakova, L., Gorokhova, S., Lee, H.-S., Vasconcelos, O., Nagle, J.W., Semino-Mora, C., Sivakumar, K., and Dalakas, M.C. 1998. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat. Genetics 19:402–403.CrossRefGoogle Scholar
  47. Graham, R.M. and Owens, W.A. 1999. Pathogenesis of inherited forms of dilated cardiomyopathy. N. Engl. J. Med. 341:1759–1762.PubMedCrossRefGoogle Scholar
  48. Grunig, E., Tasman, J.A., Kucherer, H., Franz, W., Kubler, W., and Katus, H.A. 1998. Frequency and phenotypes of familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 31:186–194.PubMedCrossRefGoogle Scholar
  49. Helbling-Leclerc, A., Zhang, X., Topaloglu, H., Cruand, C., Tesson, F., Weissenbach, J., Tome, F.M., Schwartz, K., Fardeau, M., and Traggvason, K. 1995. Mutations in the laminin oc2chain (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat. Genetics 11:216–218.CrossRefGoogle Scholar
  50. Hoffman, E.P., Brown, R.H., and Kunkel, L.M. 1987. Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928.PubMedCrossRefGoogle Scholar
  51. Hofmann, P.A., Hartzell, H.C., and Moss, R. 1991. Alterations in Ca’ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J. Gen. Physiol. 97:1141–1163.PubMedCrossRefGoogle Scholar
  52. Hunkeler, N.M., Kullman, J., and Murphy, A.M. 1991. Troponin I isoform expression in human heart. Circ. Res. 69:1409–1414.PubMedCrossRefGoogle Scholar
  53. Hunsaker, R.H., Fulkerson, P.K., Barry, F.J., Lewis, R.P., Leier, C.V., and Unverferth, D.V. 1982. Cardiac function in Duchenne’s muscular dystrophy: Result of 10-year follow-up study and noninvasive test. Am. J. Med. 73:235–238.PubMedCrossRefGoogle Scholar
  54. Jarcho, J.A., McKenna, W., Pare, J.A.P., Solomon, S.D., Holcombe, R.F., Dickie, S., Levi, T., Donis-Keller, H., and Seidman, J.G. 1989. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14g1. N. Engl. J. Med. 321:1372–1378.PubMedCrossRefGoogle Scholar
  55. Johnston, J., Kelley, R.I., Feigenbaum, A., Cox, G.F., Iyer, G.S., Funanage, V.L., and Proujansky, R. 1997. Mutation characterization and genotype-phenotype correlation in Barth syndrome. Am. J. Hum. Genetics 61:1053–1058.CrossRefGoogle Scholar
  56. Jung, D., Duclos, F., Apostal, B., Straub, V., Lee, J.C., Allamand, V., Venzke, D.P., Sunada, Y., Moomaw, C.R., Leveille, C.J., Slaughter, C.A., Crawford, T.O., McPherson, J.D., and Campbell, K.P. 1996. Characterization of delta-sarcoglycan, a novel component of the oligomeric sarcoglycan complex involved in limb-girdle muscular dystrophy. J. Biol. Chem. 271:32321–32329.PubMedCrossRefGoogle Scholar
  57. Jung, M., Poepping, I., Perrot, A., Ellmer, A.E., Wienker, T.F., Dietz, R., Reis, A., and Osterziel, K.J. 1999. Investigation of a family with autosomal dominant dilated cardiomyopathy defines a novel locus on chromosome 2g14-q22. Am. J. Hum. Genetics 65:1068–1077.CrossRefGoogle Scholar
  58. Kaprielian, R.R., Stevenson, S., Rothery, S.M., Cullen, M.J., and Severs, N.J. 2000. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 101:2586–2594.PubMedCrossRefGoogle Scholar
  59. Kass, S., MacRae, C., Graber, H.L., Sparks, E.A., McNamara, D., Boudoulas, H., Basson, C.T., Baker III, P.B., Cody, R.J., and Fishman, M.C. 1994. A gene defect that causes conduction system disease and dilated cardiomyopathy maps to chromosome 1p1–1q1. Nat. Genetics 7:546–551.CrossRefGoogle Scholar
  60. Katz, A.M. 2000. Cytoskeletal abnormalities in the failing heart. Out on a LIM? Circulation 101:2672–2673.PubMedCrossRefGoogle Scholar
  61. Keeling, P.J., Gang, Y., Smith, G., Seo, H., Bent, S.E., Murday, V., Caforio, A.L., and McKenna, W.J. 1995. Familial dilated cardiomyopathy in the United Kingdom. Br. Heart J. 73:417–421.PubMedCrossRefGoogle Scholar
  62. Kelley, R.I., Cheatham, J.P., Clark, B.J., et al. 1991. X-linked dilated cardiomyopathy with neu-tropenia, growth retardation, and 3-methylglutaconic aciduria. J. Pediatr. 119:738–747.PubMedCrossRefGoogle Scholar
  63. Kimura, A., Harada, H., Park, J.E., Nishi, H., Satoh, M., Takahashi, M., Hiroi, S., Sasaoka, T., Ohbuchi, N., Nakamura, T., Koyanagi, T., and Hwang, T.H. 1997. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat. Genetics 16:379–382.CrossRefGoogle Scholar
  64. Klietsch, R., Ervasti, J.M., Arnold, W., Campbell, K.P., and Jorgensen, A.O. 1993. Dystrophinglycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ. Res. 72:349–360.PubMedCrossRefGoogle Scholar
  65. Koenig, M., Hoffman, E.P., Bertelson, C.J., et al. 1987. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517.PubMedCrossRefGoogle Scholar
  66. Koenig, M. and Kunkel, L.M. 1990. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J. Biol. Chem. 265: 4560–4566.PubMedGoogle Scholar
  67. Koenig, M., Monaco, A.P., and Kunkel, L.M. 1988. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–226.PubMedCrossRefGoogle Scholar
  68. Krajinovic, M., Pinamonti, B., Sinagra G., Vatta, M., Severini, G.M., Milasin, J., Falaschi, A., Camerini, F., Giacca, M., and Mestroni, L. 1995. Linkage of familial dilated cardiomyopathy to chromosome 9. Am. J. Hum. Genetics 57:846–852.Google Scholar
  69. Lees-Miller, J.P. and Helfman, D.M. 1991. The molecular basis for tropomyosin isoform diversity. Bioessays 13:429–437.PubMedCrossRefGoogle Scholar
  70. Li, D., Tapscott, T., Gonzalez, O., Burch, P.E., Quinones, M.A., Zoghbi, W.A., Hill, R., Bachinski, L.L., Mann, D.L., and Roberts, R. 1999. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100:461–464.PubMedCrossRefGoogle Scholar
  71. Li, D., Ahmad, F., Gardner, M.J., Weilbaecher, D., Hill, R., Karibe, A., Gonzalez, O., Tapscott, T., Sharratt, G.P., Bachinski, L.L., and Roberts, R. 2000. The locus of a novel gene responsible for arrhythmogenic right ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12-p14. Am. J. Hum. Genetics 66:148–156.CrossRefGoogle Scholar
  72. Li, Z., Colucci-Guyon, E., Pincon-Raymond, M., Mericskay, M., Pournin, S., Paulin, D., and Babinet, C. 1996. Cardiovascular lesions and skeletal myopathy in mice lacking desmin. Dev. Biol. 175:362–366.PubMedCrossRefGoogle Scholar
  73. Lim, L.E., Duclos, F., Broux, O., Bourg, N., Sunada, Y, Allamand, V., Meyer, J., Richard, J., Moomaw, C., and Slaughter, C. 1995. Beta-sarcoglycan: Characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat. Genetics 11:257–265.CrossRefGoogle Scholar
  74. MacRae, C.A., Ghaisas, N., Kass, S., Donnelly, S., Basson, C.T., Watkins, H.C., Anan, R., Thierfelder, L.H., McGarry, K., and Rowland, E. 1995. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White Syndrome maps to a locus on chromosome 7q3. J. Clin. Invest. 96:1216–1220.PubMedCrossRefGoogle Scholar
  75. Maeda, M., Holder, E., Lowes, B., Valent, S., and Bies, R.D. 1997. Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95:1720.CrossRefGoogle Scholar
  76. Manolio, T.A., Baughman, K.L., Rodeheffer, R., Pearson, T.A., Bristow, J.D., Michels, V.V., Abelmann, W.H., and Harlan, W.R. 1992. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung and Blood Institute Workshop). Am. J. Cardiol. 69:1458–1466.PubMedCrossRefGoogle Scholar
  77. Marcus, F.I., Fontaine, G., Guiraudon, G., Frank, R., Laurenceau, J.L., Malergue, C., and Grosgogeat, Y. 1982. Right ventricular dysplasia. A report of 24 adult cases. Circulation 65: 384–398.PubMedCrossRefGoogle Scholar
  78. Marian, A.J., Yu, Q.-T., Workman, R., Greve, G., and Roberts, R. 1993. Angiotensinconverting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 342:1085–1086.PubMedCrossRefGoogle Scholar
  79. Maron, B.J., Gardin, J.M., Flack, J.M., Gidding, S.S., Kurosaki, T.T., and Bild, D.E. 1995. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation 92:785–789.PubMedCrossRefGoogle Scholar
  80. Maron, B.J., Shirani, J., Pollac, L.C., Mathenge, R., Roberts, W.C., and Mueller, F.O. 1996. Sudden death in young competitive athletes. Clinical demographic and pathological profiles. JAMA 27:199–204.CrossRefGoogle Scholar
  81. Maron, B.J., Spirito, P., Wesley, Y.E., and Arce, J. 1986. Development and progression of left ventricular hypertrophy in children with hypertrophie cardiomyopathy. N. Engl. J. Med. 315:610–614.PubMedCrossRefGoogle Scholar
  82. Maron, B.J. 1997. Hypertrophic cardiomyopathy. Lancet 350:127–133.PubMedCrossRefGoogle Scholar
  83. McConnell, B.K., Jones, K.A., Fatkin, D., Arroyo, L.H., Lee, R.T., Aristizabal, O., Turnbull, D.H., Georgakopoulos, D., Kass, D., Bond, M., Nimura, H., Schoen, F.J., Conner, D., Fischman, D.A., Seidman, C.E., and Seidman, J.G. 1999. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J. Clin. Invest. 104:12351244.Google Scholar
  84. McKoy, G., Protonotarios, N., Cosby, A., Tsatsopoulou, A., Anastasakis, A., Coonar, A., Norman, M., Baboonian, C., Jeffery, S., and McKenna, W.J. 2000. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 355:2119–2124.PubMedCrossRefGoogle Scholar
  85. Melacini, P., Fanin, M., Danieli, G.A., Villanova, C., Martinello, F., Miorin, M., Freda, M.P., Miorelli, M., Mostacciuolo, M.L., Fasoli, G., Angelini, C., and Dalla Volta, S. 1996. Myocardial involvement is very frequent among patients affected with subclinical Becker’s muscular dystrophy. Circulation 94:3168–3175.PubMedCrossRefGoogle Scholar
  86. Melacini, P., Fanin, M., Duggan, D.J., Freda, M.P., Berardinelli, A., Danieli, G.A., Barchitta, A., Hoffman, E.P., Dalla Volta, S., and Angelini, C. 1999. Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle Nerve 22:473–479.PubMedCrossRefGoogle Scholar
  87. Melberg, A., Oldfors, A., Blomstrom-Lundquist, C., Stalberg, E., Carlsson, B., Larsson, E., Lidell, C., Eeg-Olofsson, K.E., Wikstrom, G., Henriksson, K.G., and Dahl, N. 1999. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann. Neurol. 46:684–692.CrossRefGoogle Scholar
  88. Meng, H., Leddy, J.J., Frank, J., Holland, P., and Tuana, B.S. 1996. The association of cardiac dystrophin with myofibrils/z-discs regions in cardiac muscle suggests a novel role in the contractile apparatus. J. Biol. Chem. 271:12364–12371.PubMedCrossRefGoogle Scholar
  89. Mesnard, L., Logeart, D., Taviaux, S., Diriong, S., Mercadier, J.J., and Samson, F. 1995. Human cardiac troponin T. Cloning and expression of new isoforms in the normal and failing heart. Circ. Res. 76:687–692.PubMedCrossRefGoogle Scholar
  90. Messina, D.N., Speer, M.C., Pericak-Vance, M.A., and McNally, E.M. 1997. Linkage of familial dilated cardiomyopathy with conduction defect and muscular dystrophy to chromosome 6q23. Am. J. Hum. Genetics 61:909–917.CrossRefGoogle Scholar
  91. Michels, V.V., Moll, P.P., Miller, F.A., Tajik, A.J., Chu, J.S., Dirscoll, D.J., Burnett, J.C., Rodeheffer, R.J., Chesebro, J.H., and Tazelaar, H.D. 1992. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med. 326:77–82.PubMedCrossRefGoogle Scholar
  92. Milasin, J., Muntoni, F., Severini, G.M., Bartoloni, L., Vatta, M., Krajinovic, M., Mateddu, A., Angelini, C., Camerini, F., Falaschi, A., Mestroni, L., and Giacca, M. 1996. A point mutation in the 5’ splice site of the dystrophin gene first intron responsible for X-linked dilated cardiomyopathy. Hum. Mol. Genetics 5:73–79.CrossRefGoogle Scholar
  93. Milner, D.J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. 1996. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134: 1255–1270.PubMedCrossRefGoogle Scholar
  94. Mogensen, J., Klausen, I.C., Pederson, A.K., Egeblad, H., Bross, P., Kruse, T.A., Gregersen, N., Hansen, P.S., Baandrup, U., and Borglum, A.D. 1999. a-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103:R39–R43.PubMedCrossRefGoogle Scholar
  95. Moolman, J.C., Corfield, V.A., Posen, B., Ngumbela, K., Seidman, C., Brink, P.A., and Watkins, H. 1997. Sudden death due to troponin T mutations. J. Am. Coll. Cardiol. 29:549–555.CrossRefGoogle Scholar
  96. Mott, A.R., Pac, F., Denfield, S.W., Price, J.K., Belmont, J., Craigen, W., Lipshultz, S.E., and Towbin, J.A. 2000. Hypertrophic cardiomyopathy in children. J. Am. Coll. Cardiol. In press.Google Scholar
  97. Muchir, A., Bonne, G., van der Kooi, A.J., van Meegen, M., Baas, F., Bolhuis, P.A., de Visser, M., and Schwartz, K. 2000. Identification of mutations in the gene encoding lamin A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbance (LGMD1B). Hum. Mol. Genetics 9:1453–1459.CrossRefGoogle Scholar
  98. Muntoni, F., Cau, M., Ganau, A., Congiu R., Arvedi, G., Mateddu, A., Marrosu, M.G., Cianchetti, C., Realdi, G., Cao, A., and Melis, M.A. 1993. Brief report: Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329:921–925.PubMedCrossRefGoogle Scholar
  99. Nava, A., Thiene, G., Canciani, B., Scognamiglio, R., Daliento, L., Buja, G.F., Martini, B., Stritoni, P., and Fasoli, G. 1988. Familial occurrence of right ventricular dysplasia: A study involving nine families. J. Am. Coll. Cardiol. 12:1222–1228.PubMedCrossRefGoogle Scholar
  100. Neustein, H.D., Lurie, P.R., Dahms, B., and Takahashi, M. 1979. An X-linked recessive cardiomyopathy with abnormal mitochondria. Pediatrics 64:24–29.PubMedGoogle Scholar
  101. Nigro, G., Politano, L., Nigro, V., Petretta, V.R., and Comi, L.I. 1994. Mutation of dystrophin gene and cardiomyopathy. Neuromusc. Disord. 4:371–379.PubMedCrossRefGoogle Scholar
  102. Nigro, V., de Sa Moreira, E., Piluso, G., Vainzof, M., Belsito, A., Politano, L., Puca, A.A., Passos-Bueno, M.R., and Zatz, M. 1996a. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta-sarcoglycan gene. Nat. Genetics 14:195–198.CrossRefGoogle Scholar
  103. Nigro, V., Piluso, G., Belsito, A., Politano, L., Puca, A.A., Papparella, S., Rossi, E., Viglietto, G., Esposito, M.G., Abbondanza, C., Medici, N., Molinari, A.M., Nigro, G., and Puca, G.A. 1996b. Identification of a novel sarcoglycan gene at 5q33 encoding a sarcolemmal 35 kDa glycoprotein. Hum. Mol. Genetics 5:1179–1186.CrossRefGoogle Scholar
  104. Nigro, V., Okazaki, Y., Belsito, A., Piluso, G., Matsuda, Y., Politano, L., Nigro, G., Ventura, C., Abbondanza, C., Molinari, A.M., Acampora, D., Nishimura, M., Hayashizaki, Y., and Puca, G.A. 1997. Identification of the Syrian hamster cardiomyopathy gene. Hum. Mol. Genetics 6:601–607.CrossRefGoogle Scholar
  105. Nimura, H., Bachinski, L.L., Sangwatanaroh, S., Watkins, H., Chudley, A.E., McKenna, W., Kristinsoon, A., Roberts, R., Sole, M., Maron, B.J., Seidman, J.G., and Seidman, C.E. 1998. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophie cardiomyopathy. N. Engl. J. Med. 33:1248–1257.CrossRefGoogle Scholar
  106. Nowak, K.J., Wattanasirichaigoon, D., Goebel, H.H., Wilce, M., Pelin, K., Donner, K., Jacob, R.L., Hubner, C., Oexle, K., Anderson, J.R., Verity, C.M., and North, K.N. 1999. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and namaline myopathy. Nat. Genetics 23:208–212.CrossRefGoogle Scholar
  107. Ohlendieck, K. 1996. Towards an understanding of the dystrophin-glycoprotein complex: Linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. Eur. J. Cell Biol. 69:1–10.PubMedGoogle Scholar
  108. Olson, T.M. and Keating, M.T. 1996. Mapping a cardiomyopathy locus to chromosome 3p22-p25. J. Clin. Invest. 97:528–532.PubMedCrossRefGoogle Scholar
  109. Olson, T.M., Michels, V.V., Thibodeau, S.N., Tai, Y.S., and Keating, M.T. 1998. Actin muta-tions in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752.PubMedCrossRefGoogle Scholar
  110. Ortiz-Lopez, R., Li, H., Su, J., Goytia, V., and Towbin, J.A. 1997. Evidence for a dystrophin missense mutation as a cause of X-linked dilated cardiomyopathy. Circulation 95:2434–2440.PubMedCrossRefGoogle Scholar
  111. Ozawa, E., Noguchi, S., Mizuno, Y., Hagiwara, Y., and Yoshida, M. 1998. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21:421–438.Google Scholar
  112. Ozawa, E., Yoshida, M., Suzuki, A., Mizuno, Y., Hagiwara, Y., and Noguchi, S. 1995. Dystrophin-associated proteins in muscular dystrophy. Hum. Mol. Genetics 4:1711–1716.Google Scholar
  113. Petrof, B.J., Shrager, J.B., Stedman, H.H., Kelly, A.M., and Sweeney, H.L. 1993. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl. Acad. Sci. USA 90:3710–3714.PubMedCrossRefGoogle Scholar
  114. Poetter, K., Jiang, H., Hassanzadeh S., Master, S.R., Chang, A., Dalakas, M.C., Rayment, I., Sellers, J.R., Fananapazir, L., and Epstein, N.D. 1996. Mutation in either of the essential regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat. Genetics 13:63–69.CrossRefGoogle Scholar
  115. Raffaele Di Barletta, M., Ricci, E., Galluzzi, G., Tonali, P., Mora, M., Morandi, L., Romorini, A., Voit, T., Orstavik, K.H., Merlini, L., and Trevisan, C. 2000. Different mutates in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystroopy. Am. J. Hum. Genetics 66:1407–1412.CrossRefGoogle Scholar
  116. Rampazzo, A., Nava, A., Danieli, G.A., Buja, G.F., Daliento, L., Fasoli, G., Scognamiglio, R., Corrado, D., and Thiene, G. 1994. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14g23-q24. Hum. Mol. Genetics 3:959–962.CrossRefGoogle Scholar
  117. Rampazzo, A., Nava, A., Erne, P., Eberhard, M., Vian, E., Slomp, P., Tiso, N., Thiene, G., and Danieli, G.A. 1995. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1g42-q43. Hum. Mol. Genetics 4:2151–2154.CrossRefGoogle Scholar
  118. Rampazzo, A., Nava, A., Miorin, M., Fonderico, P., Pope, B., Tiso, N., Livolsi, B., Lerman, B., Thiene, G., and Danieli, G.A. 1997. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD4) maps to chromosome 2q32. Genomics 45:259–263.PubMedCrossRefGoogle Scholar
  119. Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorenz, M., Holmes, K.C., and Milligan, R.A. 1993. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65.PubMedCrossRefGoogle Scholar
  120. Richardson, P., McKenna, W.J., Bristow, M., Maisch, B., Mautner, B., O’Connell, J., Olsen, E., Thiene, G., Goodwin, J., Gyarfas, I., Martin, I., and Nordet, P. 1996. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842.PubMedCrossRefGoogle Scholar
  121. Sakamoto, A., Abe, M., and Masaki, T. 1999. Delineation of genomic deletion in cardiomyopathic hamster. FEBS Lett. 447:124–128.PubMedCrossRefGoogle Scholar
  122. Sakamoto, A., Ono, K., Abe, M., Jasmin, G., Eki, T., Murakami, Y., Masaki, T., Toyo-oka, T., and Hanaoka, F. 1997. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl. Acad. Sci. USA 94:13873–13878.PubMedCrossRefGoogle Scholar
  123. Satoh, M., Takahashi, M., Sakamoto, T., Hiroe, M., Marumo, I., and Kimura, A. 1999. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem. Biophys. Res. Commun. 262:411–417.PubMedCrossRefGoogle Scholar
  124. Schaper, J., Froede, R., Hein, S., Buck, A., Hashizume, H., Speiser, B., Friedl, A., and Bleese, N. 1991. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:503–514.CrossRefGoogle Scholar
  125. Schiaffino, S. and Reggiani, C. 1996. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol. Rev. 76:371–423.PubMedGoogle Scholar
  126. Schonberger, J., Levy, H., Grunig, E., Sangwatanoroj, S., Fatkin, D., MacRae, C., Stacker, H., Halpin, C., Eavey, R., Philbin, E.F., Katus, H., Seidman, J.G., and Seidman, C.E. 2000. Dilated cardiomyopathy and sensorineural hearing loss. A heritable syndrome that maps to 6q23–24. Circulation 101:1812–1818.PubMedCrossRefGoogle Scholar
  127. Severini, G.A., Krajinovic, M., Pinamonti, B., Sinagra, G., Fioretti, P., Brunazzi, M.C., Falaschi, A., Camerini, F., Giacca, M., and Mestroni, L. 1996. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics 31:193–200.PubMedCrossRefGoogle Scholar
  128. Siu, B.L., Nimura, H., Osborne, J.A., Fatkin, D., MacRae, C., Solomon, S., and Benson, D.W. 1999. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 99: 1022–1026.PubMedCrossRefGoogle Scholar
  129. Solaro, R.J. and Van Eyk, J. 1996. Altered interactions among thin filament proteins modulate cardiac function. J. Mol. Cell. Cardiol. 28:217–230.PubMedCrossRefGoogle Scholar
  130. Solomon, S.D., Jarcho, J.A., McKenna, W.J., Geisterfer-Lowrance, A., Germain, R., Salerni, R., Seidman, J.G., and Seidman, C.E. 1990. Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease. J. Clin. Invest. 86:993–999.PubMedCrossRefGoogle Scholar
  131. Spirito, P., Seidman, C.E., McKenna, W.J., and Maron, B.J. 1997. The management of hypertrophic cardiomyopathy. N. Engl. J. Med. 336:775–785.PubMedCrossRefGoogle Scholar
  132. Straub, V., Duclos, F., Venzke, D.P., Lee, J.C., Cutshall, S., Leveille, C.J., and Campbell, K.P. 1998. Molecular pathogenesis of muscle degeneration in the delta-sarcoglycan deficient hamster. Am. J. Pathol. 153:1623–1630.PubMedCrossRefGoogle Scholar
  133. Tesson, F., Dufour, C., Moolman, J.C., Carrier, L., Al-Mandawi, S., Chojnowska, L., Dubourg, O., Soubrier, E., Brink, J., Komajda, M., Guicheney, P., Schwartz, K., and Feingold, J. 1997. The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J. Mol. Cell. Cardiol. 29:831–838.PubMedCrossRefGoogle Scholar
  134. Thiene, G., Nava, A., Corrado, D., Rossi, L., and Pennelli, N. 1988. Right ventricular cardiomyopathy and sudden death in young people. N. Engl. J. Med. 318:129–133.PubMedCrossRefGoogle Scholar
  135. Thierfelder, L., MacRae, C., Watkins, H., Tomfohrde, J., Williams, M., McKenna, W., Bohm, K., Noeske, G., Schlepper, M., and Bowcock, A. 1993. A familial hypertrophic cardiomyopathy locus maps to chromosome 15g2. Proc. Natl. Acad. Sci. USA 90:6270–6274.PubMedCrossRefGoogle Scholar
  136. Thierfelder, L., Watkins, H., MacRae, C., Lamas, R., McKenna, W., Vosberg, H.P., Seidman, J.G., and Seidman, C.E. 1994. a-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77:701–712.PubMedCrossRefGoogle Scholar
  137. Thornell, L., Carlsson, L., Li, Z., Mericskay, M., and Paulin, D. 1997. Null mutation in the desmin gene gives rise to a cardiomyopathy. J. Mol. Cell. Cardiol. 29:2107–2124.PubMedCrossRefGoogle Scholar
  138. Towbin, J. 1993. Molecular genetic aspects of cardiomyopathy. Biochem. Med. Metab. Biol. 49:285–320.PubMedCrossRefGoogle Scholar
  139. Towbin, J.A. 1995. Biochemical and Molecular Characterization of X-Linked Dilated Cardiomyopathy (XLCM): Developmental Mechanisms of Heart Disease Eds. E.B. Clark, R.R. Markwald, and A. Takao, Futura Publishing Co., Inc., New York, pp. 121–132.Google Scholar
  140. Towbin, J.A. 1998. The role of cytoskeletal proteins in cardiomyopathies. Curr. Opin. Cell Biol. 10:131–139.PubMedCrossRefGoogle Scholar
  141. Towbin, J.A. 1999. Pediatric myocardial disease. Pediatr. Clin. North. Am. 46:289–312.PubMedCrossRefGoogle Scholar
  142. Towbin, J.A. 2000. Cardiac arrhythmias: The genetic connection. J. Cardiovasc. Electrophysiol. 11:601–602.PubMedCrossRefGoogle Scholar
  143. Towbin, J.A., Bowles, K.R., and Bowles, N.E. 1999a. Etiologies of cardiomyopathy and heart failure. Nat. Med. 5:266–267.CrossRefGoogle Scholar
  144. Towbin, J.A. and Lipshultz, S.E. 1999b. Genetics of neonatal cardiomyopathy. Curr. Opin. Cardiol. 14:250–262.CrossRefGoogle Scholar
  145. Tsubata, S., Bowles, K.R., Vatta, M., Zintz, C., Titus, J., Muhonen, L., Bowles, N.E., and Towbin, J.A. 2000. Mutations in the human delta-sarcoglycan gene infamilial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106:655–662.PubMedCrossRefGoogle Scholar
  146. Van der Kooi, A.J., Ledderhof, T.M., de Voogt, W.G., Res, C.J., Bouwsma, G., Troost, D., Busch, H.F., Becker, A.E., and de Visser, M. 1996. A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement. Ann. Neurol. 39:636–642.PubMedCrossRefGoogle Scholar
  147. Van der Kooi, A.J., van Meeger, M., Ledderhof, T.M., McNally, E.M., de Visser, M., and Bolhuis, P.A. 1997. Genetic heterogeneity of a newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement (LGMD1B). Am. J. Hum. Genetics 60:891–895.Google Scholar
  148. Vatta, M., Li, H., and Towbin, J.A. 2000. Molecular biology of arrhythmic syndromes. Curr. Opin. Cardiol. 15:12–22.PubMedCrossRefGoogle Scholar
  149. Vikstrom, K.L., Factor, S.M., and Leinwand, L.A. 1996. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol. Med. 2:556–567.PubMedGoogle Scholar
  150. Wallace, D.C. 1992. Mitochondrial genetics: A paradigm for aging and degenerative diseases? Science 256:628–632.PubMedCrossRefGoogle Scholar
  151. Watkins, H., Conner, D., Thierfelder, L., Jarcho, J.A., MacRae, C., McKenna, W.J., and Matson, B.J. 1995a. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genetics 11:434–437.CrossRefGoogle Scholar
  152. Watkins, H., MacRae, C., Thierfelder, L., Chou, Y.H., Frenneaux, M., McKenna, W., Seidman, J.G., and Seidman, C.E. 1993. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat. Genetics 3:333–337.CrossRefGoogle Scholar
  153. Watkins, H., McKenna, W.J., Thierfelder, L., Suk, H.J., Anan, R., O’Donoghue, A., Spirito, P., Matsumori, A., Moravec, C.S., and Seidman, J.G. 1995b. Mutations in the genes for cardiac troponin T and a-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332: 1058–1064.CrossRefGoogle Scholar
  154. Watkins, H., Rosenzweig, T., Hwang, D.S., Levi, T., McKenna, W., Seidman, C.E., and Seidman, J.G. 1992. Characteristic and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326:1106–1114.CrossRefGoogle Scholar
  155. Wiles, H.B., McArthur, P.D., Taylor, A.B., Gillette, P.C., Fyfe, D.A., Matthews, J.P., and Shelton, L.W. 1991. Prognostic features of children with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 68:1372–1376.PubMedCrossRefGoogle Scholar
  156. Yang, Q. 1998. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J. Clin. Invest. 102:1292–1300.PubMedCrossRefGoogle Scholar
  157. Yonega, K., Okamoto, H., Machida, M., Onozuka, H., Noguchi, M., Mikami, T., Kawaguchi, H., Murakami, M., Uede, T., and Kitabatake, A. 1995. Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am. Heart J. 130:1089–1093.CrossRefGoogle Scholar
  158. Yoshida, K., Nakamura, A., Yazak, M., Ikeda, S., and Takeda, S. 1998. Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. Hum. Mol. Genetics 7:1129–1132.CrossRefGoogle Scholar
  159. Zolk, O., Caroni, P., and Bohm, M. 2000. Decreased expression of the cardiac LIM domain protein MLP in chronic human heart failure. Circulation 101:2674–2677.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jeffrey A. Towbin
  • Neil E. Bowles

There are no affiliations available

Personalised recommendations