On the Long-time Behaviour of Solutions to the Navier-Stokes Equations of Compressible Flow

  • Eduard Feireisl
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 43)

Abstract

Let be aspatialdomain filled with a fluid. We shall assume that the motion of the fluid is characterized by the velocity of the particle moving through attime. Moreover, for each timet,we shall suppose the fluid has a well-defined massdensity.

Keywords

Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.N. Antontsev, A.V. Kazhikhov and V.N. MonachovKrajevyje zadaci mechaniki neodnorodnych zidkostejNovosibirsk, 1983.Google Scholar
  2. [2]
    R. Coifman, P.L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spacesJ. Math. Pures Appl. 72(1993), 247–286.MathSciNetMATHGoogle Scholar
  3. [3]
    R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integralsTrans. Amer. Math. Soc.212 (1975), 315–331.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spacesInvent. Math.98 (1989), 511–547.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Feireisl, Š. Matušů-Nečasová, H. Petzeltová and I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flowArch. Rational Mech. Anal. 149(1999), 69–96.MATHCrossRefGoogle Scholar
  6. [6]
    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluidsJ. Math. Fluid Mech.2000, submitted.Google Scholar
  7. [7]
    E. Feireisl and H. Petzeltová, On the long time behaviour of solutions to the Navier-Stokes equations of compressible flowArch. Rational Mech. Anal. 150(1999), 77–96.MATHCrossRefGoogle Scholar
  8. [8]
    E. Feireisl and H. Petzeltová, On compactness of solutions to the Navier-Stokes equations of compressible flowJ. Differential Equations163 (2000), 57–75.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flowManuscripta Math. 97(1998), 109–116.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    G.P. GaldiAn Introduction to the Mathematical Theory of the NavierStokes Equations ISpringer-Verlag, New York, 1994.Google Scholar
  11. [11]
    D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial dataIndiana Univ. Math. J.41 (1992), 1225–1302.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    D. Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial dataArch. Rational Mech. Anal. 132 (1995), 1–14.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    O.A. LadyzhenskayaThe Mathematical Theory of Viscous Incompressible FlowGordon and Breach, New York, 1969.MATHGoogle Scholar
  14. [14]
    P.L. LionsMathematical Topics in Fluid Dynamics Vol. 1 Incompressible Models Oxford Science Publication, Oxford, 1996.Google Scholar
  15. [15]
    P.L. LionsMathematical Topics in Fluid Dynamics Vol. 2 Compressible Models Oxford Science Publication, Oxford, 1998.Google Scholar
  16. [16]
    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluidsComm. Math. Phys. 89 (1983), 445–464.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    D. Serre, Solutions faibles globales des équations de Navier-Stokes pour un fluide compressibleC. R. Acad. Sci.Paris 303 (1986), 639–642.MATHGoogle Scholar
  18. [18]
    I. Straškraba, Asymptotic development of vacuum of 1-dimensional Navier-Stokes equations of compressible flowNonlinear World3 (1996), 519–533.MathSciNetMATHGoogle Scholar
  19. [19]
    R. TemamNavier-Stokes EquationsNorth-Holland, Amsterdam, 1977.MATHGoogle Scholar
  20. [20]
    V.A. Vaigant and A.V. Kazhikhov, On the existence of global solutions to two-dimensional Navier-Stokes equations of a compressible viscous fluidSibirskij Math. Z.36 (1995), 1283–1316. (In Russian).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Eduard Feireisl
    • 1
  1. 1.Institute of Mathematics AV ČRCzech Republic

Personalised recommendations