Advertisement

Some Aspects of Nonlinear Spectral Theory

  • Pavel Drábek
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 43)

Abstract

Let us give the following simple motivation which arises in such a fundamental subject as the Sobolev imbedding theorems.

Keywords

Weak Solution Principal Eigenvalue Fredholm Alternative Unique Critical Point Dimensional Linear Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. AdamsSobolev SpacesAcademic Press Inc., New York, 1975.MATHGoogle Scholar
  2. [2]
    A. Anane, Simplicité et isolation de la premiére valeur propre du p—Laplacien avec poidsC.R. Acad. Sci. Paris Sér. I. Math. 305 (1987), 725–728.MathSciNetMATHGoogle Scholar
  3. [3]
    A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian. In:Nonlinear Partial Differential Equations(From a Conference in Fes, Maroc, 1994) (A. Benkirane and J.-P. Grossez ed.), Pitman Research Notes in Math. 343, Longman, 1996.Google Scholar
  4. [4]
    P. Binding, P. Drábek and Y.X. Huang, On the Fredholm alternative for the p-LaplacianProc. Amer. Math. Soc. 125(1997), 3555–3559.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. DelPino, P. Drábek and Manásevich, The Fredholm alternative at the first eigenvalue for the one dimensional p-LaplacianJ. Differential Equations 159 (1999), 386–419.CrossRefGoogle Scholar
  6. [6]
    M.A. DelPino, M. Elgueta and R. Manásevich, A homotopic deformation alongpof a Leray—Schauder degree result and existence for,J. Differential Equations 80(1989), 1–13.MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. DelPino and R. Manásevich, Multiple solutions for the p-Laplacian under global nonresonanceProc. Amer. Math. Soc. 112(1991), 131–138.MathSciNetGoogle Scholar
  8. [8]
    P. Drábek, Ranges of a-homogeneous operators and their perturbationsCasopis pro Péstování Matematiky 105(1980), 167–183.MATHGoogle Scholar
  9. [9]
    P. Drábek, A note on the nonuniqueness for some quasilinear eigen-value problemAppl. Math. Letters 13(2000), 39–41.MATHCrossRefGoogle Scholar
  10. [10]
    P. Drábek and R. Manásevich, On the closed solution to some non-homogeneous eigenvalue problems with p-LaplacianDifferential and Integral Equations 12(1999), 773–788.MathSciNetMATHGoogle Scholar
  11. [11]
    P. Drábek and P. Takác, A counterexample to the Fredholm alternative for the p-LaplacianProc. Amer. Math. Society 127(1999), 1079–1087.MATHCrossRefGoogle Scholar
  12. [12]
    J. Fleckinger, J. Hernández, P. Takác and F. deThélin, Uniqueness and positivity for solutions of equations with the p-Laplacian. In:Proceedings of the Conference on Reaction - Diffusion EquationsTrieste, Italy, October 1985. Marcel Dekker, Inc., New York, Basel, 1997.Google Scholar
  13. [13]
    J. García and I. Peral, Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvaluesComm. Partial Differential Equations 12(1987), 1389–1430.MathSciNetMATHGoogle Scholar
  14. [[14]
    J. García and I. Peral, On limits of solutions of elliptic problems with nearly critical exponentComm. Partial Differential Equations17 (1992), 2113–2126.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Y.X. Huang, A note on the asymptotic behavior of positive solutions for some elliptic equationNonlinear Analysis T.M.A.29 (1997), 533–537.MATHCrossRefGoogle Scholar
  16. [16]
    A. Kufner, O. John and S. FucíkFunction SpacesAcademia, Prague, 1977.MATHGoogle Scholar
  17. [17]
    P. Lindqvist, On the equation divProc.Amer. Math. Soc.109 (1990), 157–164.MathSciNetMATHGoogle Scholar
  18. [18]
    M. Otani, A remark on certain nonlinear elliptic equationsProc. Fac. Tokai Univ.XIX (1984), 23–28.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Pavel Drábek
    • 1
  1. 1.Department of MathematicsUniversity of West BohemiaPlzeñCzech Republic

Personalised recommendations