Some Aspects of Nonlinear Spectral Theory

  • Pavel Drábek
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 43)

Abstract

Let us give the following simple motivation which arises in such a fundamental subject as the Sobolev imbedding theorems.

Keywords

Versus 97156 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.A. AdamsSobolev SpacesAcademic Press Inc., New York, 1975.MATHGoogle Scholar
  2. [2]
    A. Anane, Simplicité et isolation de la premiére valeur propre du p—Laplacien avec poidsC.R. Acad. Sci. Paris Sér. I. Math. 305 (1987), 725–728.MathSciNetMATHGoogle Scholar
  3. [3]
    A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian. In:Nonlinear Partial Differential Equations(From a Conference in Fes, Maroc, 1994) (A. Benkirane and J.-P. Grossez ed.), Pitman Research Notes in Math. 343, Longman, 1996.Google Scholar
  4. [4]
    P. Binding, P. Drábek and Y.X. Huang, On the Fredholm alternative for the p-LaplacianProc. Amer. Math. Soc. 125(1997), 3555–3559.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. DelPino, P. Drábek and Manásevich, The Fredholm alternative at the first eigenvalue for the one dimensional p-LaplacianJ. Differential Equations 159 (1999), 386–419.CrossRefGoogle Scholar
  6. [6]
    M.A. DelPino, M. Elgueta and R. Manásevich, A homotopic deformation alongpof a Leray—Schauder degree result and existence for,J. Differential Equations 80(1989), 1–13.MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. DelPino and R. Manásevich, Multiple solutions for the p-Laplacian under global nonresonanceProc. Amer. Math. Soc. 112(1991), 131–138.MathSciNetGoogle Scholar
  8. [8]
    P. Drábek, Ranges of a-homogeneous operators and their perturbationsCasopis pro Péstování Matematiky 105(1980), 167–183.MATHGoogle Scholar
  9. [9]
    P. Drábek, A note on the nonuniqueness for some quasilinear eigen-value problemAppl. Math. Letters 13(2000), 39–41.MATHCrossRefGoogle Scholar
  10. [10]
    P. Drábek and R. Manásevich, On the closed solution to some non-homogeneous eigenvalue problems with p-LaplacianDifferential and Integral Equations 12(1999), 773–788.MathSciNetMATHGoogle Scholar
  11. [11]
    P. Drábek and P. Takác, A counterexample to the Fredholm alternative for the p-LaplacianProc. Amer. Math. Society 127(1999), 1079–1087.MATHCrossRefGoogle Scholar
  12. [12]
    J. Fleckinger, J. Hernández, P. Takác and F. deThélin, Uniqueness and positivity for solutions of equations with the p-Laplacian. In:Proceedings of the Conference on Reaction - Diffusion EquationsTrieste, Italy, October 1985. Marcel Dekker, Inc., New York, Basel, 1997.Google Scholar
  13. [13]
    J. García and I. Peral, Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvaluesComm. Partial Differential Equations 12(1987), 1389–1430.MathSciNetMATHGoogle Scholar
  14. [[14]
    J. García and I. Peral, On limits of solutions of elliptic problems with nearly critical exponentComm. Partial Differential Equations17 (1992), 2113–2126.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Y.X. Huang, A note on the asymptotic behavior of positive solutions for some elliptic equationNonlinear Analysis T.M.A.29 (1997), 533–537.MATHCrossRefGoogle Scholar
  16. [16]
    A. Kufner, O. John and S. FucíkFunction SpacesAcademia, Prague, 1977.MATHGoogle Scholar
  17. [17]
    P. Lindqvist, On the equation divProc.Amer. Math. Soc.109 (1990), 157–164.MathSciNetMATHGoogle Scholar
  18. [18]
    M. Otani, A remark on certain nonlinear elliptic equationsProc. Fac. Tokai Univ.XIX (1984), 23–28.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Pavel Drábek
    • 1
  1. 1.Department of MathematicsUniversity of West BohemiaPlzeñCzech Republic

Personalised recommendations